学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理の問題です。 解説してもらいたいのですが、なぜ積分をするのですか?高校物理取ってなくて分からないところだらけなのです。解説お願いします。

[1] 図のように、斜面方向下向きにX軸 (単位:m) をとり,傾斜角0 (単位: rad) の斜面上の最下点からの距離 (単位:m) 最下点を通る基準水平面か らの高さん (単位:m) に原点Oをとる。 半径R (単位:m), 質量M (単位: kg) の剛体球が,時刻 t0Bに点Oから初速0m/sで降下する。 重力加速度 の大きさを(単位:m/') とし, この運動において、力学的エネルギー保存則 が成り立つものとする。 このとき, (1)~(6)に答えよ。 X 剛体球 h まず,剛体球と斜面との間の摩擦が無視できる場合について考える。 (1) 剛体球と斜面との間の摩擦が無視できて、剛体球が回転することなく滑って斜面上を降下するとき、この剛体球の並進運動 の運動方程式を書け。 (4) 斜面上を滑ることなく転がる剛体球の角速度の大きさ : w= であることを説明せよ。 次に, 球と斜面との間の摩擦が無視できない場合について考える。 剛体球と斜面との間の摩擦が無視できないとき,剛体球は 滑ることなく転がって斜面上を降下した。 1=MR² -MR2 であることを示せ。 (2) 半径R (単位:m) 質量M (単位:kg) の剛体球の慣性モーメントⅠ (単位:kg'm') が, I = ただし, 半径r (単位:m), 質量m (単位:kg) の薄い球殻の慣性モーメントが -mr² (単位:kg・m) であること, 半径r (単位:m) の球の表面積が 4πr2 (単位:m') であり、体積が -TTT" (単位:m) であることを、 それぞれ用いてよい。 3 4 3 (3) 剛体球が点Oで静止している状態からの剛体球の質量中心Cの周りの回転角をゆ (単位 : rad) とする。 剛体球と斜面との間 の摩擦力の大きさを F (単位:N) として,この剛体球の運動方程式を並進運動と回転運動に分けてそれぞれ書け。 de のとき、この剛体球の斜面方向の速さ : v=Rw (単位:m/s) dt (5) (3)の並進運動の運動方程式と回転運動の運動方程式を連立して, この剛体球の斜面方向の並進運動の加速度の大きさが gsin0 (単位:m/s) で与えられることを示せ。 5 (6) この剛体球が斜面上を滑ることなく転がるとき, 最下点におけるこの剛体球の斜面方向の並進運動の速さ V(単位:m/s) が V = -gh (単位:m/s) で与えられることを示せ。 10 7

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください。

次の図形の面積を求めよ。 ぎりみ 済 1 -7 cm の多(2) 5 は でい ケ/ ち 銀出く 144° 4.5 cm 15 cm (円周率を元とする。) -5 cm をとる。 右の図は,1辺の長さが6cmの正方形の内部に, 半径が6cmの円弧を 2つかいたものである。円周率を元として, 斜線部分の面積を求めよ。 2つの扇形の面積の和から, 正三三角形の面積をひくと求められる。 2 (考え方 華学端食の水 い の消の G-)+·+(G-) +G13)1 代 ⑥ の示 副事 と 単野残式平の玉O代や釜半 AB=25, BC=20, ZC=90° である△ABC において,右の 図のように頂点Cから辺 ABへ垂線 CD を引く。このとき, 次の の五 013。 問いに答えよ。 (1) 線分 CD の長さを求めよ。 3 A D 平のの人 200 三平方の定理から, ACの長さがわかり, △ABCの 面積を2通りに表すことによって CDが求められる。 また,三角形の相似を利用することもできる。 考え方 B O1 京 お (2) AACD と△BCD の面積の比を求めよ。サ更野8.1=3.V 考え方 2つの三角形の底辺を AD, BDとみると,高さは等しいので AD:BD を求める。 0 1020 30 【園関時3図番 (0 右の図は,底面の半径が9cm, 母線の長さが12 cmの円錐 である。円周率を元として,次の問いに答えよ。 (1) この円錐の体積を求めよ。 4 12 cm 9 cm 考え方 円錐や角錐の体積は -x(底面積)×(高さ)購画 す る 関囲群e (2) この円錐の表面積を求めよ。 考え方 展開図をかいて, 側面にあたる扇形の中心角を求める。

回答募集中 回答数: 0
1/4