学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解説がなく解き方が分からないので教えて頂きたいです!(特に印の付いたところ)

にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答が有 (3) 次の にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答が有 [1) 次の 理数となる場合には,整数または既約分数の形で答えること。 理数となる場合には,整数または既約分数の形で答えること。 (1) a+b+c=2, d'+が+c"= 6, +-のとき。 1.1.1 (1) を定数とする。xの2次方程式ー(&+10)x+(10k+1) = 0が重解をもつんの値 イである。ただし、 は、 ア|<| イ とする。 ab+bc+ca= ア イ となる。 (2) xの2次方程式rー5x+2 = 0の2つの解をa, Bとする。また、xの2次方程式 +px+q=0 (p, qは定数)の2つの解はa+2, B+2である。このとき。 p+q=| ウである。 のとき,a'+- ウ g+ 4-/12 である。 3 2次不等式ょ'-8x-33 >0の解と,不等式あくェーa| (a, bは定数)の解が一致 するとき、a= あ= である。 Get 4 にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答 - 17 (2)aを-4Sas4を満たす定数とする。放物線y=+7ェーa'+6a+ いて、次の が有理数となる場合には、整数または既約分数の形で答えること。 [4) AABC において,ZBAC =2ZACBである。ZBAC の2等分線と BCとの交点を Dとするとき,BD = 2, CD= 3である。次の 答のみを解答欄に記入しなさい。解答が有理数となる場合には、整数または既約分数の 形で答えること。 Dにつ にあてはまる数を求め,解 ア]であり、放物線①の頂点のy座標の最小値 放物線のの頂点のェ座標は は コである。 また。放物線のをェ軸方向に一1. y軸方向に一2だけ平行移動した放物線を②とす る。放物線のの頂点のェ座標は|ゥ (1) COSZACD = 「ア ×ACである。 であり、放物線のの頂点のy座標の最大値 である放物線のをCとすると,C上 (2) AB = イ である。 は である。y座標の最大値が の点(, y)で、xが整数かつyく0となるものは オ 側ある。 (3) AABCの面積は, |ウ である。ただし、 ウ は有理 エ 数。 は最小の正の整数とする。 2、 (4) AABDの外接円の半径は、 となる。 3

回答募集中 回答数: 0