学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すごく当たり前のことを聞いていたらすみません。黒い線で囲まれた部分の赤とピンクの蛍光色の部分がわかりません。方冪の定理でなぜOX•OA=OY•ODが示されると接線の長さが等しいのでしょうか。

を意味する. 良問 【基礎 0.3.9】 (1995TOT 秋 JO 間4) 三角形 ABC の LA の二等分線と辺BCの交点を M とし, LA の外角の二等分線と直線BC の交点を N とする. また, 三角形 ABCの外接円の点Aにお ける接線と 直線BC の交点を K とする. このとき MK =KN を証明せよ。 B db A M /CK となり, MK AK が得られる. また, LCAN = LNAD より a D N 解答図のように,線分 BA のAの方向への延長上 に点Dを取る. 接弦定理より LCAK = LABM で ある. LBAM=LMAC より LKMA= LBAM + LABM =外角 = LMAC + LCAK = LKAM LKNA + LABM = LNAD = LCAN =LKAN+LCAK ba b であるので, LABM=LCAK 各辺から引いて LKNA = LKAN が得られる. したがって AK = KN である. これと MK = AK より MK =KN がわかる. 0 0 注 Kは直角三角形 AMN の斜辺の中点で, その 外心である. 【基礎 0.3.10】 (1995TOT 春 SA 問3) 台形の互いに平行でない2辺を直径とするふたつの 円を考える. 台形の対角線の交点がこのふたつの円 の外にあるとき、 対角線の交点からふたつの円に引 いた4本の接線の接点までの線分の長さは、 すべて 等しいことを証明せよ. 解答 AD // BC である台形 ABCD の 対角線の交 点をOとする. また AB を直径とする円と直線 AC の A 以外の交点を X とし, CD を直径とする 円 T2 が BD と交わる D以外の点を Y とする. 同じ円に対する2本の接線の長さは等しいの で, 0 から T1, T2 に引いた接線の長さが等しい ことを示せばよい。それには、方の定理から。 OX-OAOY・OD を示せばよい。 三角形 AOD と COB は相似であるから, OC OB である. また三角形 OBX と三角形 OCY は相似である。 (なぜなら LXOB = LYOC, LOXB = LOYC = OC OY であり、ゆえに OB OX つまり OX-OA = OYOD となり 0 90° である) よって = OA OY OD OX' 証明が完了した。 B A AS OA OD D C ●アポロニウスの円 2定点A,B までの距離の比が一定値k (≠1) で ある点Pの軌跡は CD を直径とする円である. こ こで C, D は直線AB上にあり、符号付き長さで AC:CB=AD: DB を満たす2点である. このC. DをA,Bの調和共役点と呼ぶ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

電気双極子がつくる電場の導出過程において、 赤線部分の式変形が分かりません。 ご解説よろしくお願い致します。

9 電荷と静電場 電荷の大きさを4, 負の電荷から正の電荷にいたるベクトルをdとするとき, p=gd をその電気双極子の双極子モーメントという (図 9.26) 電気双極子がどのような電場をつ (9.43) くるかはpによっている。 一酸化炭素COや水H2Oなどの分子は電気的に中性だが,電子による負の電荷の分布の中 心と原子核による正の電荷の中心が少しずれている。このような分子は電気的には電気双 極子とみなすことができる. 電気双極子による電場を,まず電位を求め,それから式 (9.42)によって電場を計算す る,という方法で求めてみよう. 1 V(r)= 4760 (√r-d/2\_\r+d/21) 正負の電荷の中心を原点とし,正の電荷g はd/2に,負の電荷-gはd/2にあるとする. このとき, rにおける無限遠を基準点にする電位は,式 (9.37 ) により 191 図 9.26 電気双極子 1 \r-d/2 = (r²-d.r) + = 1/(1+d+r) となる。第2項はdの符号を変えればよいから, となる.ここで|d|は小さく, |d|<|r|であるとして, dについて1次までの近似でV(r) を 計算する. 式 (9.44) の( )内の第1項では, dについて2次以上の項を無視すれば, |r-d/2|=(r-d/2)・(r-d/2) r²-d.r したがって,式 (A.28) の近似を使って dr \r+d/2₁ ==—= (1-2;r) となる。これを式 (9.44) に代入し, (9.44)

解決済み 回答数: 1