学年

教科

質問の種類

化学 大学生・専門学校生・社会人

有機化学についての質問です! 写真の④の問題についての解答を教えてもらいたいです。アに当てはまる化合物は、Dの化合物だと考えています。 よろしくお願いします。

〔IV〕 次の(1)~(3)の間に答えなさい。 解答は所定の解答欄に記入すること。 (1)(ア)sp' 混成軌道(イ) sp2 混成軌道、(ウ) sp 混成軌道および(エ)2p軌道の中から,化合物 A~Fの結合軌道 の形成に使われている軌道を全て選び記号で答えなさい。 H H A -C-H H-CEC-H TOH HOH D C D E F H H A B B E C F (2) 手元に化合物 A~D を順不同で入れた試験管 (ア)~ (エ)がある。 試験管内の化合物を同定する目的で,求核剤 との置換反応を S1 機械で進行する条件と SN2 機構で進行する条件で行い反応速度を比較したところ, それぞれ下記 の結果となった。次の①~④の間に答えなさい。 SN1 機構速い←(ア)(イ)> (ウ)>()→遅い SN2 機構 : 速い←(ア)=(エ)> (ウ)> (イ)遅い。 Me Me-C-Br Me A Me Me-C-Br Me-C-Br HB HC f. HD ① 化合物の求核置換反応が S1 機構で進行するときの反応機構を、中間体の立体化学を明示して示しなさい。 求核 剤の構造は一般式 Nueで表しなさい。 ②化合物Bの求核置換反応が SN2 機構で進行するときの反応機構を、遷移状態の立体化学を明示して示しなさい。 求 核剤の構造は一般式Nueで表しなさい。 ③ 試験管(ア)~(エ)に入っている化合物を反応速度の比較から同定し, 記号で答えなさい。 ④ 試験管(ア)に入っている化合物がSw1 機構でも SN2 機構でも速やかに反応した理由を説明しなさい。SN1 機構の 説明には、共鳴構造式を利用しなさい。 e

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

この問題の(5)なのですが、消費者余剰は15×(20-5)×1/2で、生産者余剰は20×(5-0)×1/2で合っていますでしょうか? 合っていましたら合っているとコメントを、間違っていたら正しい解説をコメントにお願いいたします🙇 ※お時間ある方は、全問題の解答解説を添付し... 続きを読む

市場の需要関数, 供給関数が以下のように与えられている。 D=20-P S = 4P (1) 均衡価格、取引量を求めよ。 (2) (1) で求めた価格の時の消費者余剰、生産者余剰、 総余剰をそれぞれ求めよ。 (3) (1) で求めた価格では高いと不満の消費者がいるため、政府はその価格から1低い 価格に規制する政策をとった。 このとき、 超過需要もしくは超過供給がいくら発生してい るか答えよ。(ここでの価格規制は政府が直接価格を決定するとする) (4) (3) の時の消費者余剰、生産者余剰、 総余剰をそれぞれ求めよ。 (5) 今度は (1) で求めた価格では安すぎると不満の生産者がいるため、政府はその価格 から1高い価格に規制する政策をとった。この時の消費者余剰、 生産者余剰、 総余剰をそ れぞれ求めよ。(ここでの価格規制は政府が直接価格を決定するとする) (6) (2) の状況と比較して、 (5) で求めた高い価格規制でそれぞれ、消費者余剰、生産者 余剰、 総余剰はどのように影響を受けたか答えよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マンサスの法則の問題です。 解いてみましたが、1問目からつまずいています。 1問目から最後まで教えていただきたいです。

1. ソ連 (現: ロシア)の人口は1959年には2億900万人だったか、 割合で指数関数的に増加していくものとして概算された。 その概算式は、 dP =kP dt と表される(k=0.01)。 このとき、 1959年以降の予測人口を求めよ。 1970年の予 測値はいくらか? また人口が1959年の1.5倍になるのはいつか? pt P(t) = Poche: 2.09×108 (10.01) e 0.01+ 1959年 11午後 1970年 10.017" P(1)=2.09×108 (1+0:01)11 0.01×11=0.1 2.3317×108 229 よって 11年後の1970年は約2億3317万人 人口が1959年の1.5倍になるのは 2.09×108× ×1.5=3,135×108人 2.09×108c(1.01)と =3.135×108 1.01t=1,50 2. ニュージーランドの人口は以下の表のように与えられている。 年 人口 1980 3.13 × 106 1985 3.26 × 106 人口増加率 (1) 微分方程式が1. と同じ形式となるとき、 上の表をもちいて係数の値を計算せよ。 3.26 - 3.13 0.13 0.026 1985-1980 5 0.026×100=2,60(%) よって K= 2.60 (2)また、1935年, 1945年, 1953年, 1977年の人口を予測し、以下に与えている実際の データと比較せよ。 さらに、モデルの妥当性について考察せよ。 人口 (モデル) 年 人口 (実際) 1935 1.491 × 106 1945 1.648 × 106 1953 1.923 × 106 1977 3.140 × 106 P(t) = Pocht_1.491×10°e 0.0137 係数の値を計算 1.648 - 1:491' 1945-1935 0.157 10 =0.0157

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

1つでもわかる方教えてください🥹🙏

問題 2.1 掛け金を宣言した後、確率 0.8で掛け金を受け取り、確率 0.2 で掛け金を支払うというギャンブルがあ る。 現在1万円を所持しているあるギャンブラーは、0万円以上1万円以下の中で, 掛け金をどれだけにしようか考え ている。なお,このギャンブラーのリスク下の選好は期待効用仮説に従い、所持金x 万円に対する効用はu(x)=logx で 表される (log は自然対数) と仮定する。 (1) 掛け金∈ [0,1] の下で,最終的な所持金を X とする。 X の確率分布を求めよ。 (2) 最終的な所持金 X の期待値 E[X] および期待効用 Eu (X)] を (変数の式として)求めよ。 (3) 以下の掛け金の場合において, E[X] と [u (X)] を (比較のため必要に応じて数値的近似値で)求め,これら5 つの掛け金の間で,ギャンブラーの選好順序がどのようになっているか答えよ。 (4) •r=0 (ギャンブルをしないこと) • r = 0.25 • r = 0.5 • r = 0.75 r=1 (ギャンブルに全額をつぎ込むこと) 確率変数X の期待値と期待効用を図で表現せよ。 《ヒント: 授業内容を参照すること。> =0.5のとき, (5) ギャンブラーが選ぶべき掛け金∈ [01] を求めよ。 《ヒント:110g(+1)= log(1-1)=1/11/

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0