学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)の式の意味がわかりません。 教えてください。

(2) 4STEP 数学Ⅲ 170 第6章 微分法と積分法 109 面積(M) 精講 ….……..① を考える。 放物線y=az-12a+2 (0<a</2/2) (1) 放物線 ① がαの値にかかわらず通る定点を求めよ. (2) 放物線 ① と円 '+y2=16・・・・・ ② の交点のy座標を求めよ. a=-のとき, 放物線 ① と円 ② で囲まれる部分のうち, 放物 線の上側にある部分の面積Sを求めよ. (1) 定数αを含んだ方程式の表す曲線が,αの値にかかわらず通る 定点を求めるときは,式を α について整理して, a についての恒 等式と考えます (37) (1)y=ax²-12a +2 より 20156 (2) 2つの曲線の交点ですから連立方程式の解を求めますが, y を消去すると zの4次方程式になるので,座標が必要でも,まずェを消去してyの2次 方程式にして解きます. (3) 面積を求めるとき,境界線に円弧が含まれていると,扇形の面積を求める ことになるので,中心角を求めなければなりません.だから,中心〇と接点 を結んだ線を引く必要があります。もちろん, 境界線に放物線が含まれるの で, 定積分も必要になります. 解 答 a(x²-12)-(y-2)=0 これが任意のαについて成りたつので [x2-12=0 ly-2=0 よって,①がαの値にかかわらず通る定点は (±2√3.2) [y=a.r²-12a+2① | x² + y²=16 **** x=±2√/3,y=2 数研出 <a について整理 (3) N

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1