学年

教科

質問の種類

数学 大学生・専門学校生・社会人

矢印のところからの解説がよくわかりません 教えてください🙇‍♂️🙇‍♂️

に 5 第2章 電磁気の開何学 '(の 8証人り 0/ lsの| lo 0 コ11Zの1 (259) e*(の 0 1 0 〆⑨め 和隊凍特に置こう) は 4210 の:飲分さ4ー 0 で計算したもゃので ある・: UN d41(の IRONSO ー1 1 = d 頁 5 (230) (DNSNNWUU 叶 っまり行列 o は配位空間 9O(3) の原点ぇ三0 (すなわち単位元7) における接 ベクトル (tangent vector) である. 他の 4.() について ゃ同様に微分してミっ の独立な接ベクトルが得られる ・ 0 0 (0)まUli U義まN0 iM0NR0S も15T 02一 OS0O 0の 0渦中計上U -1 0 0 0 一般にリー群の原点における接ベクトル空間をリー環とい う (補足 2.13 参照). 群 5O(3) の接ベクト 空間として得られるリー環を so(3) と表記する. 上記の {an, gs, gs} は so(3) の基なのである. 逆に (2.29) を微分方程式だと考え (任意の初期条件 z(0) = (gz,の)” を 与えて) これを積分すると, a の指数関数として 41() が生成される : ue) 0 eむーー|0 cosz 一sint 30 0 sin? coS4 任意の 〈ベクトル〉 (232) ⑭ 三 4の1 十 の2Q2 十 0sQs E s0(3) についてもゃ同様にこれを積分して回転 4() = e? が得られる. つま り 〈ぐ2 トル〉 (e リー環) を積分して運動 (G リー群) が生成される. (ベク トル) 9 は生を生じる(4) を生成する) 行列 (作用素) 。 であること に注意しょ う. (2.32) を行列の形で書く と

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(1.82)から(1.83)の1行目への変形を教えてください

1.5 電磁力と運動方程式 と定義する・ これを応カテンソル (stress tensor) と呼ぶ31 発散の定義を拡張 う5 ゆで (V 7)* = > の77k 2 と書く. 以上を (1.80) に使うと ァー/ vs ト】 を得る. 領域 に働く力 はの密度 (単位体積あたりの力) の体積積分だ ょ考えアーリナdz と置くと (< は任意の領域であるから) SEM という表現を得る. さて電磁場の応力テンツルは 2 (@g -3 wlgf) 5 (ぁg 半2 1.82) タ /o 2 3 によって与えられる. これを成分とする応力テンソルを 7,。 と書きマックス ウェルの応カテンツルと呼ぶ 7. の発散を計算すると (マックスウェルの方 程式をた用いて) V.人6。 = eo [(V お玉ーー玉x(Vx妃] エー [(V.Bお)お-Bx(Vxぢ)] /0 三p/ぢ十eoぢ x (の万) 一戸 x (eoのみ刀二) ニーp/二7xアeoの(ぢxどぢ) (1.83) を得る. この第1 項と第 2 項は荷電粒子に作用するローレンツカ (1.71) を有限 な体積をもつ物体に一般化したもるのであることがわかる. 第3項は電磁場自体がもつ「運動量] が時間変化することを表している. つ まり (万 x ) は「電磁場の運動量密度」 を表すベクトルなのである. (1.36) で定義したポインティングベクトルを思い出そう. 5 = 娘xメおは電詳場 31 テン >ッ "リ テンソルアア の要素に上つきのインデックスを与えるのは』 これを物体の応カテンツルと 迷合するための都合である. まだテンソルの友変成分と半変成分の区別を十分説明して いないので, 後の議論のための技術的準備とだけ理解しておこう.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1
2/2