学年

教科

質問の種類

物理 大学生・専門学校生・社会人

107番についてです (2)まで正解です (3)以降で自分が書いてることのうち何を間違えているのか指摘してほしいです 習っている先生が合成容量を使わない方針なので、その方針で指摘していただけると助かります

72 た。極板間の電場,電位差,静電エネルギーはそれぞれ何倍になるか。 (センター試験 + 福岡大) XX (4)(3)に続いて、極板と同形で厚さd.比誘電率2の誘電体を極板間に 入れた。 極板間の電位差 V, を Vo で表せ。X 3/16 100 間隔 だけ離れた極板 A,Bからなる電気容 4305/1 量Cの平行板コンデンサー, 起電力 V の電池と スイッチSからなる図1のような回路がある。 まず, スイッチSを閉じた。 A V B 図1 ○○(1) コンデンサーに蓄えられた電気量はいくらか。 (2) このときの極板Aから極板Bまでの電位の 次に,スイッチSは閉じたまま、厚さの金 属板Pを図2のように極板 A, B に平行に極板 間の中央に挿入した。 A V P B 図2 変化の様子を極板Aからの距離を横軸としてグラフに描け。 (3)また,このとき極板Aに蓄えられた電気量はいくらか。 (4)さらに,スイッチSを開いた後,金属板Pを取り去った。このと きの極板間の電位差 V' ばいくらか。 メト (5) Pを取り去るときに外力のした仕事 Wはいくらか。 6/19 X(3) C, にかかる電圧はいくらか。 _X (4) C2 に蓄えられる電気量はいくらか。 × (5) 抵抗Rで発生したジュール熱はいくらか。 108 起電力が V で内部抵抗の無視できる電池 E, 電気容量がCの平行板コンデンサーC, 抵抗値Rの抵抗R, およびスイッチSを接続 した回路がある。 G点は接地されており,そ の電位は0である。 はじめSは開いており, コンデンサーに電荷は蓄えられていない。 E 電磁気 73 (京都産大) R (a) まずSを閉じ, Cを充電する。 Sを閉じた瞬間に抵抗Rを流れる 電流は(1)である。 (b)Sを閉じてから十分に時間がたったとき,Cに蓄えられている静電 エネルギーは (2) である。またこの充電の過程で電池がした仕事 は(3)であり、抵抗Rで発生したジュール熱は(4)である。 (c)次に(b)の状態からSを開いた。最初Cの極板間隔はdであったが、 極板を平行に保ったままゆっくりと2dに広げた。このときA点の である。 また極板を広げるのに必要な仕事は(6) とされる。 電位は (5) であり,極板間に働く静電気力の大きさ(一定と考えてよい)は (7) (近畿大 + 防衛大) (愛知工大 + 静岡大) R S2 109 極板 A,Bからなるコンデンサーがあり [電荷 Q [C] が充電されている。 極板は一辺の長 さが〔m〕の正方形で,極板間隔はd[m] であ ある。 極板間は真空で, 電場 (電界) は一様とし、 真空の誘電率を co〔F/m〕 とする。 [+] [Q] -Q 図 1 +Q A 107 図はコンデンサー Ci, C2, C3 (電気 容量はそれぞれ C, 2C,3C) 電池 (起 電力V) およびスイッチ S. S2と抵抗R からなる回路である。 最初, スイッチは どちらも開いており、いずれのコンデン サーにも電荷はない。 I. まず, スイッチを閉じ, C, と C2 とを充電した。 _ (1) C, に蓄えられる電気量はいくらか。 (2) C2 にかかる電圧はいくらか。 Ⅱ.次にS」を開いてから,S2を閉じ、十分に時間がたった。 A,B間に, 図2のように誘電体を挿入する。 誘電体は一辺1 [m] の正方形で,厚さd[m] 比誘電率 e, である。 誘電体をx [m]だけ挿入し たとき, 誘電体部分の電気容量は (1) (F) であり,真空部分の電気容量は (2) [F]だ から,全体での電気容量は(3) [F] となる。 x -Q 図2 2.

未解決 回答数: 1
物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(1)〜(4)の解き方って合っていますでしょうか。また、(5)の問題が分からなかったので教えていただきたいです🙇左が問題、右が解いたものです。

問4 軽いバネの片端を壁に固定し、 他端に質量mの物体をつけて粗い床面に置いた、水平パネ振り子を考 える。 バネが自然長の時の物体の位置を=0とし、 バネが伸びる向きに軸正をとる。 物体は床面から速度 と逆向きの抵抗力-bu を受ける (6は比例定数)。時刻 t = 0 に、 原点にある物体に正の初速度 vo を与える と、バネ定数にがん=だったため、このパネ振り子は臨界減衰振動をした。 この時、任意の時刻 t におけ る物体の位置(t) は右下のグラフのようになり、y=を用いて以下の式で表せる。 (t)=votent 以下の間に、mo, のうち、 必要な記号を用いて答えよ。 (自然対数の底eは数字なので、当然使用可。) (1) 最初に物体の速さが0となる時刻 to を求めよ。 (2) 時刻 to の物体の位置 z (to) を求めよ。 (3) 時刻 to までにバネが物体にする仕事 W を求めよ。 (4) 時刻 to までに床からの抵抗力が物体にする仕事 Wa を、 (3) の結果を用いて求めよ。 (5) 【チャレンジ問題】 前問で求めたW を、 以下の積分を実行することで導け。 rx(to) = to) (-kv)dz = Wa= ・to sto (-kv)dr = √ (-bv) vdt = √ (-bv²) dt 位置 時刻

回答募集中 回答数: 0
1/43