学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マンサスの法則の問題です。 解いてみましたが、1問目からつまずいています。 1問目から最後まで教えていただきたいです。

1. ソ連 (現: ロシア)の人口は1959年には2億900万人だったか、 割合で指数関数的に増加していくものとして概算された。 その概算式は、 dP =kP dt と表される(k=0.01)。 このとき、 1959年以降の予測人口を求めよ。 1970年の予 測値はいくらか? また人口が1959年の1.5倍になるのはいつか? pt P(t) = Poche: 2.09×108 (10.01) e 0.01+ 1959年 11午後 1970年 10.017" P(1)=2.09×108 (1+0:01)11 0.01×11=0.1 2.3317×108 229 よって 11年後の1970年は約2億3317万人 人口が1959年の1.5倍になるのは 2.09×108× ×1.5=3,135×108人 2.09×108c(1.01)と =3.135×108 1.01t=1,50 2. ニュージーランドの人口は以下の表のように与えられている。 年 人口 1980 3.13 × 106 1985 3.26 × 106 人口増加率 (1) 微分方程式が1. と同じ形式となるとき、 上の表をもちいて係数の値を計算せよ。 3.26 - 3.13 0.13 0.026 1985-1980 5 0.026×100=2,60(%) よって K= 2.60 (2)また、1935年, 1945年, 1953年, 1977年の人口を予測し、以下に与えている実際の データと比較せよ。 さらに、モデルの妥当性について考察せよ。 人口 (モデル) 年 人口 (実際) 1935 1.491 × 106 1945 1.648 × 106 1953 1.923 × 106 1977 3.140 × 106 P(t) = Pocht_1.491×10°e 0.0137 係数の値を計算 1.648 - 1:491' 1945-1935 0.157 10 =0.0157

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物体の落下と粘性抵抗力に関する問題です。最初の図を書く問題からわかりません。わかる方いらっしゃいますか?よろしくお願いします。

問題2 質量の質点の空気中における落下を考える. 質点には重力, および空気による粘性抵抗力 がはたらいている. 粘性抵抗力の大きさは質点の速度に比例し、その比例係数をん > 0 とする. 重力加速度をg とする. 鉛直下向きをy軸とする. 以下の問いに答えよ. 1. 質点とy軸を描き, 質点にはたらく重力と粘性抵抗力を矢印として図に描き入れよ. ま た、それぞれの大きさを図に書き入れよ(「大きさ」 が負の値にならないように注意!). 2. 質点の運動を記述する運動方程式を書け. 3. 時間の経過とともに質点は重力の影響で加速し, それに伴い粘性抵抗力が増大する. 十分 に時間が経つと質点にはたらく重力と粘性抵抗力がつり合い, 質点の速度は一定値に 達する (終速度という). 質点が終速度に達したとき加速度が0であることを踏まえて 運動方程式を解くことなくf を求めよ. 4. 運動方程式を解け. また, 運動方程式の解y(t) を時間微分し, t→∞の極限をとること で終速度 limt→ ý (t) を求め, 前問で導いた答えと一致することを確認せよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
1/10