学年

教科

質問の種類

物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1