学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気の問題です。大至急解き方を教えていただけないでしょうか……。全く解き方がわかりません。どなたかどうかお願いします

問題5 (この問題では適宜対称性を援用せよ.なお, 1) 2) では Ia はIのままで計算すれば よい. 3) では Ia の表式の計算が必要となる) 極板が半径rの金属円板, 極板間距離がl の (十分理想的な) 平行板コンデンサがあるとする. いまこのコンデンサは充電中であるとする. 充電中には極板間の電場は時間変化するが, 空間的には一様 (極板間のどこでも同じ) であると仮定する.また, 2枚の極板が底面(上面・ 下面), 高さlの円柱を考えておこう. の → 1) 極板間では電流密度はすであるが,変位電流密度 J = o はすではない。極板間 で極板と同じ半径rの円板面をDとするとき をDにおいて面積分したものを,変位電 at 流La=pn as とする。 上記の仮定より Laは極板間で一様となる。変位電流 I』が上記 Jar Hola の円柱の側面に作る磁場の大きさBがB= となることを示せ. 2πr 2) 極板間の電位差を Vとする. 上記の円柱の側面におけるポインティングベクトルの大きさ Sを計算し, Sを側面にわたって積分したものを W とすると W = VI』 となることを示せ . πr² 3) 定数Cを C= com とおく。 時刻がt=0〜tのときに、電位差がV= 0〜V と変化した l とする.このとき, 2) の Wを積分すると - wa = 1/2 CV2 となることを示せ。 W dt

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電気双極子がつくる電場の導出過程において、 赤線部分の式変形が分かりません。 ご解説よろしくお願い致します。

9 電荷と静電場 電荷の大きさを4, 負の電荷から正の電荷にいたるベクトルをdとするとき, p=gd をその電気双極子の双極子モーメントという (図 9.26) 電気双極子がどのような電場をつ (9.43) くるかはpによっている。 一酸化炭素COや水H2Oなどの分子は電気的に中性だが,電子による負の電荷の分布の中 心と原子核による正の電荷の中心が少しずれている。このような分子は電気的には電気双 極子とみなすことができる. 電気双極子による電場を,まず電位を求め,それから式 (9.42)によって電場を計算す る,という方法で求めてみよう. 1 V(r)= 4760 (√r-d/2\_\r+d/21) 正負の電荷の中心を原点とし,正の電荷g はd/2に,負の電荷-gはd/2にあるとする. このとき, rにおける無限遠を基準点にする電位は,式 (9.37 ) により 191 図 9.26 電気双極子 1 \r-d/2 = (r²-d.r) + = 1/(1+d+r) となる。第2項はdの符号を変えればよいから, となる.ここで|d|は小さく, |d|<|r|であるとして, dについて1次までの近似でV(r) を 計算する. 式 (9.44) の( )内の第1項では, dについて2次以上の項を無視すれば, |r-d/2|=(r-d/2)・(r-d/2) r²-d.r したがって,式 (A.28) の近似を使って dr \r+d/2₁ ==—= (1-2;r) となる。これを式 (9.44) に代入し, (9.44)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

宿題の部分教えて下さい。お願いします

pa -×0= 0 M3 X; = r cos 0 prdrd0 = ; p r2 dr [sin 01 = cos 0 d0 = =x pa3 ×0=0 「M3 1 p r sin 0 prdrd0 = M r2 dr M. [- cos 0] = Yc = sin 0 de = *y よって、重心は。= (0,0) 重心の計算(多重積分) *例題5質量がMで、密度が一様な、底面の半径a、高さが bの 円錐の重心 a-fe r dr M = pdxdydz = de dz = cb ca- r2r X; = r cos0 pr dO dr dz = …= 0 = 0 =x rb ra- r2m 1 Yc = TT r sin 0 pr d0 dr dz = … = 0 cb ca- c2r ZG = (宿題) z pr de dr dz = …→ JaJJA… まとめ * 大きさのある物体の重心を定義して、重心の位置を計算した。 * 地上での重力が大きさのある物体に働く場合、物体の各点で重力が働動くた め、つり合いを議論するとき、その重力の総和を計算する必要がある。 * 大きさのある物体に働く重力の総和は、その物体の重心に全ての重力が働 いた場合とつり合いの式は同じになる。 【宿題11質量M、密度が一様で十分に薄い2辺の長さがaの 直角に等辺三角形の重心を求めよ a a 【宿題2]質量M、密度が一様で十分に薄い半径aで2辺の間 の角が45度の扇型(円を8等分したもの)の重心を求めよ 【宿題31質量M、密度が一様で底面の半径がa、高さが の円錐の重心を求めよ。 (45° a * 宿題1、2、3を解きレポートを提出してください。 締め切りは4月24日の23時59分です。 補足:ベクトルの内積 A-B * AとBのなす角0、大きさ4,B 向きを持たない A.B= AB cos 0 ベクトルのx成分,y成分,z成分 A, = A-e, A, = A· ēy. A-B= A,B,+ AyBy +A,Bz A, =A-。 Ax x軸 ,,。:単位ベクトル = (1,0,0), é, = (0,1,0), é, = (0,0,1) |= | = le|=1, = ,.。 = é,. é, = 0 *分配法則:A-(B +¢) = A· E+ A-¢は成り立つので、 A-B= (A,,+ Ayé, + Azē,). (B,ē, + B,é, + B,ē.) = AxBx + A,B, + A,B。 12

回答募集中 回答数: 0
1/3