学年

教科

質問の種類

物理 大学生・専門学校生・社会人

熱力学の問題です! 口の空いたフラスコなのでnの物質量も変わるのでこの場合はpv/t=一定にならないのではないのですか?? nも変わっているような気がするのですが、、

3RT Nam 発展例題 14 ボイル・シャルルの法則 X 口の開いたフラスコが, 気温 〔℃〕, 圧力か [Pa] の大気中に放置されている。このフ ラスコをt〔℃〕までゆっくり温めた。 次の各問に答えよ。 〇 (1) このとき, フラスコ内の空気の圧力はいくらか。 <(2) 温度がな 〔℃〕 から 〔℃〕 になるまでに, フラスコの外へ逃げた空気の質量は, はじ めにフラスコ内にあった空気の質量の何倍か。 指針 一定質量の気体では,圧力,体積 V, 温度 T の間に, pV =一定の関係 (ボイル・ T シャルルの法則) が成り立つ。 フラスコの外へ逃 げた空気も含めて, この法則を用いて式を立てる。 解説 (1) フラスコは口が開いており, 大気に通じているので, フラスコ内の空気の圧 力は大気圧に等しい。 したがって か [Pa] (2) フラスコの容積をV[m²] とし,温める前の t〔℃〕, p 〔P〕, V[m²] のフラスコ内の空気が, 温めた後, t2 [℃] [P][P] V' [m²] になったと する。 ボイル・シャルルの法則の式を立てる と, PIV P₁V' 273+t₁ 273 + t2 = と表される。 273+t2_ これから, 273+t1 フラスコの外に逃げた空気の体積 ⊿V は , 4V=V'-V=Vx- m t₂-t₁ 273+t₁ 温める前にフラスコ内にあった空気の質量を m,外に逃げた空気の質量を⊿m とすると, Am AV V' Am V'=Vx m が成り立ち. VX. VX 発展問題 132 t₂-t₁ 273+t1 273+t2 273+t₁ = t₂-t₁ 273+t₂ 倍

解決済み 回答数: 2
物理 大学生・専門学校生・社会人

5-c, 6-bを教えていただきたいです

5) 図 4.2 に示すように抵抗値 R の抵抗と容量Cのコンデンサが接続された回路がある. 入力を電圧e(t), 出力をコンデンサ両端の電圧vc (t) とする. 問5)においては, t=0 で 回路は静止状態にあるものとする. 静止状態とは,すべての素子に流れる電流,及び 素子両端間の電位差が0である状態をいう. a)この回路の入出力間の伝達関数H(s) = Vc(s)/E (s)を求めよ. ここで, Vc(s), E(s)は, それぞれ, vc(t) とe(t) のラプラス変換である. b)この回路に入力として, 高さ のステップ電圧e (t) = vou(t) を与えた時の出力vc(t) を求め,さらに図示せよ。 ただし, v > 0 とする. c) この回路に入力として, パルス幅Tで高さv のパルス電圧を与えた時の出力v(t)を 求め,さらに図示せよ。このとき, 入力e(t) は,式 (4.2) で定義したパルス波p (t) を 用いて, e(t) = vop (t) と表すことができる. し 単位ステップ関数をuct)として Pit) = u(t) - ult-Ti) e(t) R C vc(t) 図 4.2 RC 回路 6) 図 4.2の回路の入力として, パルス幅T」で高さ v のパルス電圧を周期Tで繰り返し与 える.ただし,T> T1 とする. 十分に遠い過去から入力が与えられ, t≧0では回路が 定常状態に達しているとする.定常状態では, vc(t) = vc(t + T)となっている.この とき,0≤t<Tの1周期の出力を求めたい. a) 図 4.2の回路で, vc (0) 0の場合の, E(s)とVc(s) の間に成り立つ関係式を求めよ.こ こで, Vc(s), E(s) は, それぞれ, vc (t) とe(t) のラプラス変換である. b)上記 a)で求めた関係式を用いて,入力e(t)としてvop(t)を与えた時の出力v(t)を求 めよ.ただし, vc (0) は未知数として残したままで解くこと. e) 上記 b)で求めた式で, vc(0) = vc(T)の関係を用いてvc(0)を求めよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

電気双極子がつくる電場の導出過程において、 赤線部分の式変形が分かりません。 ご解説よろしくお願い致します。

9 電荷と静電場 電荷の大きさを4, 負の電荷から正の電荷にいたるベクトルをdとするとき, p=gd をその電気双極子の双極子モーメントという (図 9.26) 電気双極子がどのような電場をつ (9.43) くるかはpによっている。 一酸化炭素COや水H2Oなどの分子は電気的に中性だが,電子による負の電荷の分布の中 心と原子核による正の電荷の中心が少しずれている。このような分子は電気的には電気双 極子とみなすことができる. 電気双極子による電場を,まず電位を求め,それから式 (9.42)によって電場を計算す る,という方法で求めてみよう. 1 V(r)= 4760 (√r-d/2\_\r+d/21) 正負の電荷の中心を原点とし,正の電荷g はd/2に,負の電荷-gはd/2にあるとする. このとき, rにおける無限遠を基準点にする電位は,式 (9.37 ) により 191 図 9.26 電気双極子 1 \r-d/2 = (r²-d.r) + = 1/(1+d+r) となる。第2項はdの符号を変えればよいから, となる.ここで|d|は小さく, |d|<|r|であるとして, dについて1次までの近似でV(r) を 計算する. 式 (9.44) の( )内の第1項では, dについて2次以上の項を無視すれば, |r-d/2|=(r-d/2)・(r-d/2) r²-d.r したがって,式 (A.28) の近似を使って dr \r+d/2₁ ==—= (1-2;r) となる。これを式 (9.44) に代入し, (9.44)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1
1/5