学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題を解説して頂きたいです。 よろしくお願いします。

2021年度2期 演習問題 - 授業14回目 1/1 []に当てはまる数値を求めなさい。その結果を5月29日(土)午前6時59分までに Tora-Net CoursePower「工業力学>14回目>提出 14」に入力して提出しなさい。 提出状況を成績評価に加味します。. *重力加速度の大きさをg=9.8 m/sとします。 【5-4】なめらかな水平床の上に,物体 A(質量 2.8 kg)と物体B(質量 1.8 kg)が置かれています。これらを伸縮しない軽いロープで繋ぎ,物 体Bを一定の力F(大きさ8N)で水平方向に引っ張ります。このと き,両物体に生じる加速度の大きさaは[1] m/s° であり,ロープに作 用する張力の大きさTは[2] N です。 図 5-4 【5-5) 静止していた質量1300 kg の自動車の天井から糸を吊り下げて, その下端に小球を取り付けました。時刻 toから一定の推進力Fで自動 車を加速したところ,Fと逆向きに糸が0= 15°傾きました。小球は自 動車よりも十分に軽いと見なします。このとき,Fの大きさFは[3] kN でした。また,時刻 toから!= [4] 秒後に,自動車の速さが 60 km/h になりました。 図 5-5 【5-6) エレベータかごA(質量580 kg)に荷物B(質量280 kg)を載せて,Aをケ ーブルに吊しています。鉛直方向上向きを正とします。かごAの床から荷物Bに 作用する反力をRとします。 *ケーブルの張カTの大きさが 10.5 kN のとき,エレベータの加速度aは[5] m/s? です。また,R の大きさRは[6] kN です。 *エレベータの加速度aが[7] m/s?のとき,Rの大きさがBの重量の 85 %にな ります。このとき,ケーブルの張力Tの大きさTは[8] kN です。 A B 図 5-6

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

新高2です。図aから図bへの書き換え方がわかりません。どなたか教えていただきたいです!

必闘79.〈音波の性質) 図1上図のように原点Oにスピーカーを置き, 一定の振幅で、 一定の振動数fの音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上(x>0) の各点で圧力pの時間変化を測定する。 ある時刻において, x軸上(x>0) の点P付近の空気の圧力か をxの関数として調べたところ, 図1下図のグラフのようになっ た。ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力を poとする。 圧力かが最大値をとる x=Xo から,次に最大値をとる x=xs までのxの区間を8等分 し、, 2,…, Xxと順にx座標を定める。 (1) x」からx。 までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力pの時間変化を調べたところ, 図2のグ ラフのようになった。圧力かが最大値をとる時刻 t=Do から, 次に最大値をとる時刻 t3Dts までの1周期を8等分し,丸, ね, ……, pols ちと順に時刻を定める。 (2) ちからなまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように、原点0から見て点Pより遠い側の位置に, x軸 に対して垂直に反射板を置くと, 圧力が時間とともに変わらず常 年 に加となる点がx軸上に等間隔に並んだ。 (3) これらの隣接する点の間隔 dはいくらか。 なお, 音波の速さ スピーカー p pos X34 X5 X7 X8 %6 点P付近の拡大図 図1 ts t ts toち Ttsty ts t 図2 反射板 図3 をcとする。 (4)(3)の状態から気温が上昇したところ, (3)で求めたdは増加した。その理由を説明せよ。 [12 東京工大)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マーカーと矢印のところがわかりません、教えてください http://www.yam-web.net/science-note/AM.pdf

導出2 http://hep1.c.u-tokyo.ac.jp/-kazama/QFT/qh4slide.pdf 「量子力学/場の量子論 /Noether の定理」参照 SL Lagrange 微分: を次のように定義する。 SL Te (6,4) OL 8p SL OL 三 p OL 場の運動方程式: =0 次の無限小変換を考える。 x→x'=x+4x (x→x=x"+ Ax") p(x) → p(x) = ¢(x) + 4¢(x) 4は total change(¢(x) からの差分)を表す。 また、中(x)は、(x)= ¢(x) + Ax" 6,¢(x) でもある。 中(x) は場を少しだけ変形したもの、次の項は位置を少しだけずらしたときの差分。つまり、場の形の微小変 化による差分+位置の微小ずらしによる差分= total change となる。 Lie 変分:同一座標点での場の形の変化を Lie 変分と呼びるで表す。 るp(x) = ¢(x) - (x) 上の中(x)に関する2つの式より、 Sp(x) = ¢(x) - (x) = 4¢(x) - Ax" o,¢(x) すなわち total change 4¢(x) は、A¢(x) = ō¢(x) + Ax" o,¢(x) となる。 (x地点では、ふ(x)= ¢(x') - ¢(x') ) 作用S=Jd'xL(¢x), a,4(x))の変化を求める。 S'=[dx L(¢), 6.f(ax)) まず場の変化をx'での Lie 変分で書き表す。すなわちゅ(x) = ¢(x) + 5p(x) 等々。 すると、微小量の一次のオーダーまでとって S'=[dxL(ec). 6,4)+Jd'x( + L -6,54) 第1項をxでの表式に書き換えると、 Ja'r La) =[dxL) d'x=dx =Jdx(L) + Ax" 6,1 ) ヤコビアンは次のように計算される。行列 MをM,= 0, Ax° と定義すると、 TOPページ(総合目次)へ 全文検索は Ctrl+F 11 = detl1 +MI = expTrln(1 + M) ~expTrM~ 1+ 6Ax" OL S'=Jd'x(1+ 0Ax°)(L+ Ax" 0,L + 6,6) ("e)e - 5p T9 この一次近似は、 SL L L -Sp+ 6(- SL 三 6¢ OL =[dx{L+6.(ax" L) + - るみ)} a(6,4) 0.4) =Jdx{L+ + T2 p+ Ax" L)} (0,p) 8p S-S=[dx +s T9 るp+ Ax" L)} - Ja'xL=S 8p (e)e、 =Jdx{e"+ SL ここでは、デ= OL - み+ Ax" L 6,4) SL ゅ= 0 8p 8L L T9 場の運動方程式 8p =0より、 " a(6,4) L L るp+ Ax" Lとしたが、j"= - a(0,4) - 5ゅ - Ax" Lとおいてもよい。) 6j"= 0 (j"=

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(2.1.1)をどのように展開すれば(2.1.4)になるんでしょうか

2.1 ラグランジュ形式 解析力学の2つの形式,すなわちラグランジュ形式とハミルトン形式についてその 特徴を述べ,両者の関係を考察するのが本章の目的である). まず,ラグランジュ形式から始める. ラグランジュ形式は独立変数として一般座標 g'を用いて記述されるが, ラグランジュ関数Lはgとずで表される。そして, 外的 拘束条件のない場合は, ラグランジュの運動方程式は前節で述べたように d OL TO = 0,(i=1~ N) dt(0g Og' である。これは gi の時間に関する2回微分方程式であり, 一般には N個の独立な方 住式糸である.したがって, これらの方程式を解いて運動を求めるとき, 初期値 g' と 9の両方を指定して運動が一義的に決定される. すると, 力学系の状態を指定するの は9とであるといえるから, g'とがとを変数とする空間を考えると都合がよい。 このような2N 次元空間を状態空間、あるいはハミルトン形式の位相空間(phase *pace)と対応させて, 速度位相空間(velocity phase space)という。 そこで,速度位相空間の座標を(g',g) で表すことにする.は速度 に対応す る変数であるが, gi は一応q' とは別ものとして扱い, q' の時間微分であるfと区別 注*)本章以下,ラグランジュ関数 Lおよびハミルトン関数H は時間を陽に含まないとする.時間に 顕わに依存する場合も, OL/0tの付加項が付くだけで, 以下の考察は本質的に変わりはない。 15

解決済み 回答数: 1