学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(1.82)から(1.83)の1行目への変形を教えてください

1.5 電磁力と運動方程式 と定義する・ これを応カテンソル (stress tensor) と呼ぶ31 発散の定義を拡張 う5 ゆで (V 7)* = > の77k 2 と書く. 以上を (1.80) に使うと ァー/ vs ト】 を得る. 領域 に働く力 はの密度 (単位体積あたりの力) の体積積分だ ょ考えアーリナdz と置くと (< は任意の領域であるから) SEM という表現を得る. さて電磁場の応力テンツルは 2 (@g -3 wlgf) 5 (ぁg 半2 1.82) タ /o 2 3 によって与えられる. これを成分とする応力テンソルを 7,。 と書きマックス ウェルの応カテンツルと呼ぶ 7. の発散を計算すると (マックスウェルの方 程式をた用いて) V.人6。 = eo [(V お玉ーー玉x(Vx妃] エー [(V.Bお)お-Bx(Vxぢ)] /0 三p/ぢ十eoぢ x (の万) 一戸 x (eoのみ刀二) ニーp/二7xアeoの(ぢxどぢ) (1.83) を得る. この第1 項と第 2 項は荷電粒子に作用するローレンツカ (1.71) を有限 な体積をもつ物体に一般化したもるのであることがわかる. 第3項は電磁場自体がもつ「運動量] が時間変化することを表している. つ まり (万 x ) は「電磁場の運動量密度」 を表すベクトルなのである. (1.36) で定義したポインティングベクトルを思い出そう. 5 = 娘xメおは電詳場 31 テン >ッ "リ テンソルアア の要素に上つきのインデックスを与えるのは』 これを物体の応カテンツルと 迷合するための都合である. まだテンソルの友変成分と半変成分の区別を十分説明して いないので, 後の議論のための技術的準備とだけ理解しておこう.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(1.5)でどのような計算をしているのかよくわかりません、教えてください🙇‍♂️

6 CE のり の CO で, 真電荷と伝導電流によ て誘起きれた電荷 P4 2 の 5 物質定数を*く んだ場の基と してかきなおすこ とによっ す. 上にのべた なe和のし のとして解釈しなお ノアフトを次に 行ルよ 2・ ed ょず抽介谷< の存在によってで: 物体内に誘起さ れる分極電荷 0z を求めよ 2・ 2章の (の SSOK とく に場が時間的に変わらないときには (x) ニー grad の(%) (1.1) ェょうって生ずる真宅 、この %@②) を静電ポテンシィァルという2・ 点電荷 % に ャの角電坦は第 章 (3.2) にあるように っ ⑪⑭.2) gy) 三 -。。RP R 生還2放502fNSUNeiIE由か2さクトイ である・ KS る. すると 無限避放で 0 になる静電ボテア ンシァルは JA の=ィx。 3 よってあたえられる・ これが正しいことは, 1.3) を(1. 代入してかみれば る. 図1.1 の電気双極子が* 点につくる静電ポテンシィァ わか ルを求めよ 2・ 示デシシァルはスカラー量であるから Pu 6 1 1 = ( 3 。) .$④ 8 QP MO人2が)のョベクョトル を考えて, カーe5 を ーを保ちながから, *つ0 の極限をとる. すると 1 9 / 1 %) 三 ] 5仙 の) 4zeo 2 (で) Os 5G _ 生陽光思 図1.1 ) 4ze ) 微小な電気極子 記 の・grad 1 4zeo gr4do 一・ 2

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

下の問題をできるだけ教えてほしいです。雑ですみません。 ホントに何も分からなくて困ってます。お願いします。

【問 1】 点 (zz) における電場が,E = 』十2j で与えられている. この電場を図示せよ. ただし xy 平面上に限定して描く いう0 【問 2】 電荷の分布が以下のような場合, それによって生じる電場分布の形を, 文章と図を用いて答えよ. (1) 半径 。 の球面上に, 一様な電荷密度で分布する. (2) 無限に広い平面上に, 一様な電荷密度で分布する. (3) 無限に長い 半径 。 の円柱内に, 一様な電荷密度で分布する. 【問 3】 0 <ぁ<o を定数とする. 原点を中心とする半径 。 の球体内の, 半径り<ヶ<o の範囲に電荷が電荷密度 ヵ で一様に 分布している. この電荷によって生じる電場 E を求めたい. (1) 電荷の対称性を用いる範囲で, E の分布はどのようになるか, 文章と図で説明せよ. (2) ガウスの法則 pd4 = = な Eo における面 ⑤ (ガウス面) はどのようなものを選べばよいか. 簡単に理由をつけて答えよ. (3) ガウスの法則における電荷項 0j。はどのようになるか答えよ. (4) ガウスの法則を用いて, 原点からの距離 テ における電場の大きさ 万 を求めよ. 【問4】 た= 間 とおく (< 軸方向の基本単位ベクトル gk と混同しないように). 一様な電場 E」 = 2V2i が存在している空 間の原点に, 電荷 go三1 を固定した. G) 点5, *う における電場 EE を求めよ. (⑫) 点(0. 還 3 における電場の大きさ 万 を求めよ. (3) 束 (0. な) に。 電荷9ニー2 を置くとき。gに作用する力F と, その大きさ が を求めよ. 【問 5】 ガウスの法則を用いて, 電荷分布から電場を求める際に考えなければいけないことは何か. 重要と思われることを3点 答えよ-

解決済み 回答数: 1