学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(1.5)でどのような計算をしているのかよくわかりません、教えてください🙇‍♂️

6 CE のり の CO で, 真電荷と伝導電流によ て誘起きれた電荷 P4 2 の 5 物質定数を*く んだ場の基と してかきなおすこ とによっ す. 上にのべた なe和のし のとして解釈しなお ノアフトを次に 行ルよ 2・ ed ょず抽介谷< の存在によってで: 物体内に誘起さ れる分極電荷 0z を求めよ 2・ 2章の (の SSOK とく に場が時間的に変わらないときには (x) ニー grad の(%) (1.1) ェょうって生ずる真宅 、この %@②) を静電ポテンシィァルという2・ 点電荷 % に ャの角電坦は第 章 (3.2) にあるように っ ⑪⑭.2) gy) 三 -。。RP R 生還2放502fNSUNeiIE由か2さクトイ である・ KS る. すると 無限避放で 0 になる静電ボテア ンシァルは JA の=ィx。 3 よってあたえられる・ これが正しいことは, 1.3) を(1. 代入してかみれば る. 図1.1 の電気双極子が* 点につくる静電ポテンシィァ わか ルを求めよ 2・ 示デシシァルはスカラー量であるから Pu 6 1 1 = ( 3 。) .$④ 8 QP MO人2が)のョベクョトル を考えて, カーe5 を ーを保ちながから, *つ0 の極限をとる. すると 1 9 / 1 %) 三 ] 5仙 の) 4zeo 2 (で) Os 5G _ 生陽光思 図1.1 ) 4ze ) 微小な電気極子 記 の・grad 1 4zeo gr4do 一・ 2

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ、黄色で囲ったところのような式が出るのか教えてください!

昌 回渡の波融 ュ導位 これまでは, 一直線上を伝わる ( 波に (eeで(は 波について学んた に 面上を伝わる波について考えよ 6 回19 小波画 水面上の 1 点を振動させると, 当 波源を中心に円形の波紋が広がる( る(軌19紀でのとき, 同じ では振動の状態, すなわち位相が等しい。 これらの位相が等し ねた面を 波面 といい. 波が平面になる波を 平面江。 wave front 2 なる波を 球面没 という。波面は波の進む向きと常に垂直であ< spherical wave 水面上の 2 点を振動させると, これらの点を波源とする波が広が る(図 20)。このとき, 山と山(谷 と谷) が重なりあう場所は振幅が 大きくなる。また, 山と谷が重な りあう場所は, 振動を弱めあう。 四20 水画洲の証渉 ---は螺めあう を結んだ線の一部を示した。 このように, 波が重なって振動を 強めあったりめあったりする現象を 波の干渉 という。 図21 をもとにして, 強めあう場所と, 時めあう場所の条件を式で表 そう。 振幅 4 で同位相(一方が山のとき他方も山。 一孝が谷のきき他方も倒) で振動する 2 つの流源Su。 S。 から出る波の波長をえとずる波源S, S。 (MM ぁ とすると, 距離の差は | と家す 渉の条件は次のようになる。 強めあう点 : |』ー叫4=2mX今 選めあう点 : |』ー引 =+計4=(2w+1) x誠 0 AS 5 若 で さ破線 | ) は, 波源 Q。 5。 を点とする双曲線となる。 また, 法旨 * 出 っ>

解決済み 回答数: 1