学年

教科

質問の種類

物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校レベルの物理の問題です。 答えは出したのですが、解答と合わなかったので最後の問題の解き方を教えてください。

空気抵抗とは空気との接触により運動を妨げようとする力のことであり、運動している物体の速さ (速さの1乗) に比例する粘性抵抗と速 さの2乗に比例する圧力抵抗がある。 雨が圧力抵抗のみを受けながら鉛直下向きに落下する様子を考える。 圧力抵抗の比例定数を重 力加速度の大きさをg [m/s²]として以下の問に答えよ。 V 問31 鉛直下向きを正として雨の加速度をa [m/s'] としたとき、 速さ [m/s]で落下している雨滴の運動方程式はどのように記述され るか。 適切なものを1つ選べ [31] ① ma = mg + kv² (2) ma=-kv (3) ma = -kv² (6) ma=mg- ・kv (7) ma = mg-kv² ⑧ ma-mg 問32 比例定数kの単位はSI単位でどのように表されるか。 適切なものを1つ選べ。 [32] ① N·m ②N・s ③kg·m ⑥ N/m ⑦ N/s ⑧kg/m ①kmg mg k ② 月 33 雨滴は地表付近では等速度運動をする。 そのときの速度 (終端速度) Pt [m/s] として適切なものはどれか。 1つ選べ。 [33] mg -1 (半径に反比例) img k 5 1 (半径の1乗に比例) ④kg's ⑨kg/s 1km g 30 (半径に関わらず一定) 4 ⑧ 0 34 圧力抵抗の比例定数kはp を空気の密度、S を物体の断面積として、以下の関係がある。 x=2/cos CpS 4 ma = kv 9 ma = mg - 12/1 (半径の平方根に反比例) ⑤m/s² ⑩ 単位無し ここで、Cは物体の形状に依存する係数であり、 球の場合はおよそ 0.5 となる。 雨滴の形状が球だとして、終端速度は雨滴の半径の何 乗に比例するか。 適切なものを1つ選べ。 [34] ⑥⑥/12 (半径の平方根に比例 62 (半径の2乗に比例) ⑤ ma=kv² 10ma = mg + kv kv²=mg V = long fals い JAL = der²tu Img_ 11 4mg erin 4mg en F√ √

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0