学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(1.82)から(1.83)の1行目への変形を教えてください

1.5 電磁力と運動方程式 と定義する・ これを応カテンソル (stress tensor) と呼ぶ31 発散の定義を拡張 う5 ゆで (V 7)* = > の77k 2 と書く. 以上を (1.80) に使うと ァー/ vs ト】 を得る. 領域 に働く力 はの密度 (単位体積あたりの力) の体積積分だ ょ考えアーリナdz と置くと (< は任意の領域であるから) SEM という表現を得る. さて電磁場の応力テンツルは 2 (@g -3 wlgf) 5 (ぁg 半2 1.82) タ /o 2 3 によって与えられる. これを成分とする応力テンソルを 7,。 と書きマックス ウェルの応カテンツルと呼ぶ 7. の発散を計算すると (マックスウェルの方 程式をた用いて) V.人6。 = eo [(V お玉ーー玉x(Vx妃] エー [(V.Bお)お-Bx(Vxぢ)] /0 三p/ぢ十eoぢ x (の万) 一戸 x (eoのみ刀二) ニーp/二7xアeoの(ぢxどぢ) (1.83) を得る. この第1 項と第 2 項は荷電粒子に作用するローレンツカ (1.71) を有限 な体積をもつ物体に一般化したもるのであることがわかる. 第3項は電磁場自体がもつ「運動量] が時間変化することを表している. つ まり (万 x ) は「電磁場の運動量密度」 を表すベクトルなのである. (1.36) で定義したポインティングベクトルを思い出そう. 5 = 娘xメおは電詳場 31 テン >ッ "リ テンソルアア の要素に上つきのインデックスを与えるのは』 これを物体の応カテンツルと 迷合するための都合である. まだテンソルの友変成分と半変成分の区別を十分説明して いないので, 後の議論のための技術的準備とだけ理解しておこう.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(1.5)でどのような計算をしているのかよくわかりません、教えてください🙇‍♂️

6 CE のり の CO で, 真電荷と伝導電流によ て誘起きれた電荷 P4 2 の 5 物質定数を*く んだ場の基と してかきなおすこ とによっ す. 上にのべた なe和のし のとして解釈しなお ノアフトを次に 行ルよ 2・ ed ょず抽介谷< の存在によってで: 物体内に誘起さ れる分極電荷 0z を求めよ 2・ 2章の (の SSOK とく に場が時間的に変わらないときには (x) ニー grad の(%) (1.1) ェょうって生ずる真宅 、この %@②) を静電ポテンシィァルという2・ 点電荷 % に ャの角電坦は第 章 (3.2) にあるように っ ⑪⑭.2) gy) 三 -。。RP R 生還2放502fNSUNeiIE由か2さクトイ である・ KS る. すると 無限避放で 0 になる静電ボテア ンシァルは JA の=ィx。 3 よってあたえられる・ これが正しいことは, 1.3) を(1. 代入してかみれば る. 図1.1 の電気双極子が* 点につくる静電ポテンシィァ わか ルを求めよ 2・ 示デシシァルはスカラー量であるから Pu 6 1 1 = ( 3 。) .$④ 8 QP MO人2が)のョベクョトル を考えて, カーe5 を ーを保ちながから, *つ0 の極限をとる. すると 1 9 / 1 %) 三 ] 5仙 の) 4zeo 2 (で) Os 5G _ 生陽光思 図1.1 ) 4ze ) 微小な電気極子 記 の・grad 1 4zeo gr4do 一・ 2

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

式(8.10)の1行目から2行目への変形の仕方がわかりません どなたか教えてください🙇‍♂️

8 でべた定人電流においては 任意の人 りから 電荷の量は 0 であり, したがって 信域 内の電荷 する正味の このときには 9e(*, 9!三0 であり, (8.のは Py 8.8) たる、これが第2章(1.8) の定常電流の保存則である. つまり, それは一般の電荷保存則(⑧. 2の特別な場合になっている。. いま、位置 0 にある点電荷6が速度 ②⑦ で運動しているとき を考えよう、 その電荷密度と電流密度とは, それぞれ(2.8) と ⑫.12)から x, の ー e6?(xーz(⑦の), KCY,の 三 のの9(xー2⑦) (8.9 で表わされる. これらは(8.7)の電荷保存則をみたしているであ ろうか. これを調べるために, (8.9) を(8.7) の左辺に代入して, 次のように計算する. すなわち 田 量は変化しな 9の ay ioの=c計ezの)+edivho(のが(ezの] = egrad。 0(xーz(⑦)・ (の・grad。 6*(xータ(⑦) = 一e grad。 の(*ー2(の)・9⑦のee②⑰・grad。@(xータ⑦) io (8.10) となり, たしかに電荷保在則がみたされている. ここで grad。 お 0 zは, それぞれ * およびヶに関する微分をとることを意 の2番目の等号は, 第1章(2.1)9にあるように, のアルタ関数の積であることに注意し, またそ ル量に関しては, その成分に分解すれば容易に 2 また3番目の等号では, 一般 に 97ァーの)/2ヵ= が成立することを利用した.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

【力学】起潮ポテンシャルの導出の問題について、2.1の式変形及びマクローリン展開で詰まってしまいました。方針を思いつかないため、お力添えいただけるとありがたいです。 追:|r-R|について、1/R * √( (r/R)^2 -2(r/R)cosθ +1 )というような変形... 続きを読む

問題 2 湖汐は月や太陽の引力によって引き起とされる. いま, 地球, 月, 地表の海水 (ここでは海水を単 位質量を持つ質点として扱う) の 3 体からなる系を考える (図 2).、地球の中心から質点および月までの位 置ベクトルをそれぞれ7, 万 とする. また, 月の質量を mm とする. このとき, 質点に働く引力のボテン 1 r-太 シャルはのーー (一本 証 ) とでる (ではの 2.1 テー月ソテー刀7 = V72 本 p 一2r7Pcos6 であることに注意して, Vr(r) を7/旭の 2 次の項 っ ン展間し。 ーーの" (acosz0 1) となることを確認せよ (これを息潮ポテン シャルという). なお, 計算に現れる定数項は直後に考える起潮力に関係しないので無視してよい. 2.2 寺力の分直成分6 成分) 用 (9 成分) は上記の起湖ボテンシャルを用いて次のよう与え らちれる:所ニーーー、 邦三 で9 起潮力を計算するとともに, 地表での起潮力の分布の概略 までマクロー を図示せよ.

解決済み 回答数: 1
2/2