学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学・剛体の問題です。 (1),(2)は恐らくこれかな?という解を求めましたが、(3)以降が分かりません。

以下の問1, II に答えよ。 zA I. 質量m、半径r、厚さ、高さんの密度が一様な剛体とみなせる円 筒(図1)が、水平な床の上を初速度の大きさ 、初角速度の大きさ woで投げ出され、倒れずに滑っていく運動を考える。円筒底面の中 心を原点とし、円筒とともに移動する座標系のz, y, z 軸および偏角 9を図1のように定義する。y軸の正の向きは常に円筒の進行方向と する。偏角0の位置にある円筒底面が床から受ける単位面積あたり の垂直抗力の大きさ N(0) と動摩擦力の大きさ F(6) の間には、μを 動摩擦係数として比例関係 F(6) = μN(0) があるとする。 b 図1 重力加速度の大きさをgとし、重力はz軸の負の向きに働く。また,円筒の厚さ6は半径rよ り十分小さいとする。空気抵抗の影響は無視して、投げ出された円筒の運動に関する以下の問 いに答えよ。 まず、回転させないで円筒を投げ出す場合 (wo = 0) を考える。 (1) 投げ出した円筒の底面全体が受ける垂直抗力および動摩擦力の大きさを求めよ。 (2) 投げ出した円筒が動摩擦力を受けて静止するまでの距離を求めよ。 (3) 円筒に働く慣性力による原点まわりのトルクの大きさを求めよ。 (4) 投げ出した円筒が床の上を滑っているとき、円筒底面に働く垂直抗力は一様ではない。円 筒の前方(0 =T/2付近)と後方 (0 = ーT/2付近)のどちらの垂直抗力が大きいか、理由と ともに答えよ。 以下では、円筒底面に働く単位面積あたりの垂直抗力の大きさが N(0) = a+ Bsin0 と表せる と仮定する。ここでa,Bは定数とする。 (5) 垂直抗力による原点まわりのトルクの大きさをa, 8, r, bのうち必要なものを用いて表せ。 (6) 円筒が倒れずに滑っていくための条件をん, r, uを用いて表せ。 次に、右回り(z軸の正の向きから見て時計回り)に回転させて円筒を投げ出す場合(wo 0) を 考える。 (7) この円筒のz軸まわりの慣性モーメント「および円筒とともに移動する座標系での投げ出 した直後の運動エネルギーを求めよ。 (8) 円筒底面に働く動摩擦力の0依存性により、円筒の軌道は曲がる。その曲がる向きを理由 とともに答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

これ教えてください!

1. 右の図 (人て(C) のように, 鉛直方向 の管に 動をする。物体の下方にバネ定数たのバ ネが置かれている。バネが自然長の場合 のバネの上端の位置を鉛直方向の座標 > の原点とする。高さんの位置から初速度 ャ=0 で物体を落下させる。物体がバネの ある> はバネと離れることなく運動する。管と 物体の間の摩擦や空気抵抗, およびバネ の質量は無視できるとし, 重力加速度を 9とす 1) (2) (3) 沿って質量 m の物体が上下に運 ミミ 0の所まで落ちてくると, 物体 (⑳) ⑧) (⑥ ⑩0 ミミんと, (⑪り z<0 のそれ ぞれの場合について, 物体の力学的エネルギーの式を書け。また, 力学的エネルギー 保存の法則を用いて, (ii) z=0 での物体の速さg, (iv) バネが一番短くなった時の座標 ヶをそれぞれ求めよ。 物体の位置 >が 0以上と 0未満のそれぞれの場合について, 運動方程式を書け。z<0 の場合に物体の運動は単振動になるが, その振動の中心を求めよ。[Hint : 振動の中心 は, 物体を静かにバネの上に置いてつり合わせた位置。] この物体が高さ >=んと (1) で求めたバネが一番和くなった点の間を往復運動する 場合について, 始めの 1往復 (1 周期) について物体の加速度 c), 速度 の, 位置 3(の0を求め, 横軸を時間,に取ったグラフで表せ。[Hint : バネの質量が無視できる場合 バネが自然長に戻ったところで物体がバネから離れ, 空中に放り上げられる。運動方 程式を書き下し, 解を正確に求めるのが望ましいが, 難しい場合はグラフの概形だけ でも良い。 ]

回答募集中 回答数: 0