数学 大学生・専門学校生・社会人 8日前 数3の微分です この3つがなぜこうなるのかわからないです +と-で♾️がどう変わるのかもよくわからないので教えてください🙇♀️🙇♀️ lim I DO 97.70 x² lim X→-0 lim x+-0 小 x² 2 ラッピ = 0 30 - 00 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 最後できたと思ったのですが、 M=1の時の値が問題文のBと等しくなかったことにきずいて、よく考えたら二項定理が間違っていると思いました。 そして二項定理を解こうとしたのですが、どうすれば良いのか分からなかったので教えて欲しいです。 (2)方針としては(1)を使って規則性... 続きを読む [1] (1) m 010 A O = J D D O 0 O 1 9 0 m=292 A 00 m=32. A³ =AA= 8 001 010 0.0 DO = ( 0 0 0 ° P 00 0 010 000 9 11 800 10 D D O 0 060 000 m239 z Am = (2)A+4E= D 060 AE = EA +2. Bm = (A+4E)" m T 0 0 C A = A + 4m AE + 4 Em = = m 4 Am f +4₤m ex AmA +4E 04mo + 0 04h 0 0 0 40 = 4 0 4 0 0 = I (A+46) B AM + ml 4EAM- である。 mCAA mm Cm 4m 4E m = 1 B 962 m=2982 0 0 0 a B² 00 1 1=39785 006 000 0 00 f P D P O 0 4 + D 8. 0 + 00 8 0 004 + 40 040 4 。 = とかるので 45 0 D 45 6 0 4 0 D O 4 = 0 4 48 0 0 48 0 4 B³ = 000 f 120 。 + 4 D D = 4120 O O 12 D 4 9 D 4 12 0 O P 9 0 G 123962 [44m °) 0 0 44m 004 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 2ヶ月前 下記リンクのGeoGebra幾何にて、軌跡機能を用いてアポロニウスの円を描いてみたいのですが、 下記リンクのYahoo知恵袋にて記載されている画像の方法では描けませんでした。 具体的には、 「数aのスライダを設定します. A中心半径2aの円cと, B中心半... 続きを読む AP: BP=2:1 となる点Pの軌跡を図示します。 平面上に2定点A,Bをとります。 数aのスライダを設定します。 A中心半径2aの円cと, B中心半径aの円dを描きます。 c,dが交わるように,aの値を調整した上で, a = 2.98 cとdの交点C,Dを描きます。 a = 2.37 C,Dを残像表示に設定し, aのアニメーションをONにします 必要に応じてaの範囲を設定すれば, 点の集合としての軌跡が描かれます (上図). また、 「軌跡」のボタンを使い, a, Ca, Dとクリックすれば (Caの順でもよい), それぞれの軌跡がloc1, loc2のように描かれます (下図). C A A doc1 B loc2 未解決 回答数: 0
数学 大学生・専門学校生・社会人 5ヶ月前 この問題なのですが、片方だけuと置換するってことはやっていいことですか? 積分を解く際のルールみたいなものがわかっていなくて… どなたか教えてください🙇♀️ 答えは書いてあるものであっています。 189 18 141 8.4 2x+5 x²+2x+2 2x+5 dx フッパー1+2 dx -Si 2x+5 dx (x+1)² + 1 Li 2(x+1)+3 dx. x+1.犬とおく、 dx = dt x11-0 だてにひとおく。 2tdt = du [log | + ||] - [3 don't]; =log 2 + 3 ton-11 (x+1)²+1 2t+3 t ·S' 21 - 3 dx 2t Th = log 2 + 3 x 7 3 -S. (1241) dt = log 2. Dr, du + U So 1337 dt + 2+ Th 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 5ヶ月前 (5)の解き方を教えていただきたいです。 アプローチだけでも構いません 3 関数y=1/3のグラフ上に, 2点A. Bがある。点Aのx座 標は6.点Bのx座標が-3である。 このとき、次の問いに答え である。このとき。 このとき、次の問いに よ。 ただし, 点E (6,0), 原点を○とする。 (1点Bのy座標を求めよ。 (2) 直線ABとy軸との交点Cのy座標を求めよ。 (3) 直線ABとx軸との交点をDとする。 直角三角形DOCにおいて、CDの長さを求めよ。JC-120 (4)点Pが関数y=1/2x(-3<x<6)のグラフ上を動く。 点Pのx座標をtとするとき, PDEの面積をtを用いて表せ。 P P (6.24) A (5) ADPの面積が56になるような点Pの座標をすべて求め () (B D. 1990S 7-3 OS E 4 次の問いに答えよ。 -6 ( (1) 右の図のx, yの値をそれぞれ求めよ。 A D B0116° 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 6ヶ月前 電磁気の問題ですが、さっぱりわかりません。過程とともに回答していただけると幸いです 写真におさまらなかった問四以下は下記のとおりです (4) 小問(3) で求めた静電ポテンシャルを用いて、導体球外部における電場を求 めよ。 (5) 小問(4) で求めた電場より、導体... 続きを読む 一様な電場Ē。= (0,0,E) のなかに半径R の導体球を原点 (0,0,0) に置く。球 外部の近傍における電場や電荷を求めよう。 なお、 導体に関する知識は証明なく 用いてよい。また無限遠での静電ポテンシャルは一様な電場に由来する静電ポテ ンシャルを除いて0とする。 [ヒント 1] 導体表面では、静電ポテンシャルは表面の位置によらない定数で ある。 [ヒント 2] 電気双極子モーメントアは電子双極子を構成する負電荷 -g の位置 から正電荷 +q の位置へのベクトルを用いて、ㄗ = qdと定義される。 [ヒント 3] 原点にある電気双極子戸が十分遠方で作る静電ポテンシャルは 1 p.F Od(7) = 4πEO F3 である (1)上記の一様な電場Eを作る静電ポテンシャルは、do (r) = -Eoz (= -Eo-r) であることを確認せよ。 (2) 導体球の代わりに(仮想的な)電気双極子(電気双極子モーメントア)を原 点に置いた時に発生する静電ポテンシャルと、 静電ポテンシャル do (ア)の 重ね合わせを考える (電気映像法)。 原点から半径Rの球面上で静電ポテン シャルが0となるのに必要な戸に関する条件を求めよ。 (3) 小間 (2) で求めた条件を用いて、 導体球外部における静電ポテンシャルを求 めよ。 [ヒント 4] 一様電場由来の静電ポテンシャルを加えるのを忘れないように。 未解決 回答数: 1
数学 大学生・専門学校生・社会人 10ヶ月前 多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む 1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅). 未解決 回答数: 0
数学 大学生・専門学校生・社会人 10ヶ月前 ( 1) 絶対値xの範囲はどうやって決めたのですか? おそらくg (x)である分母の部分は絶対に0になってはいけないから0にならんように範囲を取っている。 でもその場合,なぜ開区間(0,π)だけでいいんですか?開区間(π,2π)でもg '(x)≠0【ロピタルの定理の【2】参... 続きを読む 13 ロピタルの定理 分析でてきたら⇒ロピタル 10563 ロピタルの定理 開いて、 0-(1-5) mil 基本 例題 057 不定形 (号)の極限① ★★☆ 以下の極限値を, ロピタルの定理を用いて求めよ。 mil (1−cosx)sinx -0 (1) lim ex-1-x sinhx-x x0 x−sinx (2) lim (3) lim x→0 x-0 sinx-x 指針 0 fin mil いずれも の不定形の極限である。 f'(x) gix). I g'ix) 0-(x-xdnie) mil (E) 定理 ロピタルの定理 αを含む開区間I上で定義された関数f(x), g(x) が微分可能で,次の条件を満たすとする。 [1] limf(x)=limg(x)=0 x→a x-a [2] xキαであるI上のすべての点xでg'(x) ≠0 '(x.doia) f'(x) [3] 極限 lim が存在する。 x-a g'(x) f(x) このとき, 極限 lim x-a g(x) x-a も存在し lim -=lim ig(x) x-a g'(x) f(x) f'(x) が成り立つ。 mil x0 0<|x| <πにおいて {(1-cos x)sinx}' lim lim ...... 【不定形の極限が現れる場合, f" (x), g" (x), f'(x), g" (x), が存在して定理の条件を満 たすならば,ロピタルの定理は繰り返し用いてよい。 詳しくは 「数研講座シリーズ 大学教養 微分積分」 の112~119ページを参照。 解答 (1) lim{(1-cosx)sinx}=0 かつ lim(x-sinx)=0 x→0 mil= nia- (x−sinx)=1-cosx+0 sinx+cosx−cos x drianil [1] の確認。 mil [2]の確認。 x→0 (x−sinx) x→0 1−cosx 0800- N Fox) cosx-cos 2x =lim ① 1−cosx x0 cos"x-sin'x=cos2x -zag() mil ここで ここでLim(cosx-cos2x)=0 かつ lim (1-cosx) = 0 [1]の確認。 x→0 x→0 もう一度 0<x<πにおいて (1−cosx)=sinx=0 [2] の確認。 ロピタルの 選ぼう! また lim a x0 (cosx-cos 2x)' (1-cos x)' 2sin2x−sinx =lim x→0 sinx [3] の確認。 =lim (4cosx-1)=3 x-0 よって,ロピタルの定理により, ①の極限値も存在して3 (1−cosx)sinx に等しいから lim x-sinx x-0 -=3 4sin2x=2sin x cosx (2) lim (ex-1-x)=0 かつ limx2=0 x→0 x-0 x=0において (x2)'=2x=0 [1]の確認。 [2] の確認。 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 12ヶ月前 問2.1の証明が分かりません。 ※1枚目が質問内容、2枚目が仮定 問 2.1 例1 (b), (c) で R" に定義された各種の距離 dp : R" × R” → [0,∞) (p = 1,2,...,∞) において, R” の点列 πm:= (x(m),x(m),...,xmm))∈R(m= R" 2 1,2,・・・) が, 点æ= (π1, 2,...,πn) ∈R" に収束するためには,各k ∈ {1, 2,...,n} に対し (m) →πk (m→8) となることが必要十分であることを示せ. 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 12ヶ月前 慣性モーメントの求め方なんですけど、変形の仕方がわからないです。よろしくお願いします。 定義 akty I = S Pdm dm=r.do.arh.e ss.re. h. p.r.db.dr Srdo = 2.R.r 回答募集中 回答数: 0