学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

最大、最小問題についてです。 鉛筆の()で囲った部分は、解答するときに書かなければ何がまずいのでしょうか? よろしくお願いします🙇

例題 6-10(最大・最小①) A 67 大値を求めよ。 がすべて正で x+y+z=a (aは定数) のとき,積 xy'z の最 謝 解説 関数 f(x,y)において最大値・最小値の存在および最大・最小とな る点が極大・極小であることが明らかな場合がある。しかも極大・極小となる 点の候補がごく限られているならば,ただちに最大・最小が求まる。 [解答] x+y+z=aより, z = a-x-y z=a-x-y>0より,x+y<a よって,x,y が満たすべき条件は, x>0,y>0, x+y <a この不等式によって表される領域をDとおく。 O a また, x'y'z=xy (a-x-y)=axy-xyxy* f(x,y)=axy-xy-x'y^ とおく。 f(x, y) はD上の連続関数で,かつ, D の境界上で値は0となり最大とはな らない。 よって, D の内部で必ず最大となる。 したがって, 最大となる点は停 留点である。 fx(x, y) =2axy-3x2y3-2xy=xy(2a-3x-2y) fy(x, y)=3ax2y2-3x3y²-4x²y3=x²y² (3a-3x-4y) fx(x, y) =0 かつ f(x, y) =0 とすると, 2a-3x-2y=0 かつ 3a-3x-4y=0 囲える 真界を含む 有界閉集合上の 連続関数は Maxとminをもつ これを解くと, x=- a 3' v=0 y a よって,最大となる点の候補は (11/27) a 3' のみであるから, f(x, y) は a (x,y) a (17.12において最大となる。 a a a6 最大値は, 3'2 432

解決済み 回答数: 1
1/15