学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

3 ∠ACB=90° である直角三角形ABC と, その辺上を移動する3点 P, Q, R がある。点 P,Q,R は,次の規則に従って移動する。 • 最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P,Q,R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点Qは辺BA上を, 点R は辺 CB 上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし, 点Pは毎秒1の速さで移 動する。 点P,Q,Rは,それぞれ点 C, A, B の位置に同時刻に到達し,移動を終了 する。 (1) 図1の直角三角形ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ, S= オ 4 袋の ④る白こりし個 60° 30 A ・20 B 図 1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値, 2回だけとりうる値を,次の①~②のうちからそれぞれ1つずつ選べ。 ただし, 移動には出発点と到達点も含まれるものとする。 ⑩ 5/2 ① 4/5 ② 10/3 とりえない値 カ 1回だけとりうる値 キ 2回だけとりうる値 ク (iii) 各点が移動する間における △APQ, △BQR, △CRP の面積をそれぞれS1, S21 S3 とする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと もにどのように変化するかを答えよ。 (あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 12-1 5- ケコサシ 秒後 ス A B ・13・ 図2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

4袋る白こりし [3] ∠ACB=90° である直角三角形 ABC と, その辺上を移動する3点 P, Q, R がある。 点 P, Q, R は、 次の規則に従って移動する。 ・最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P, Q, R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点 Qは辺 BA 上を, 点R は辺 CB上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし、点Pは毎秒1の速さで移 動する。 点P, Q, R は, それぞれ点C, A, B の位置に同時刻に到達し, 移動を終了 する。 (1) 図1の直角三角形 ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ S=エ オ 60° 30 A 20 B 図1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値 2回だけとりうる値を,次の〜②のうちからそれぞれ1つずつ選べ。 ただし、 移動には出発点と到達点も含まれるものとする。 5/2 ① 4/5 ② 10/3 とりえない値 カ (iii) 各点が移動する間における △APQ, BQR, CRP の面積をそれぞれ S, S2 S, どする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと 1回だけとりうる値 キ 2回だけとりうる値 ク もにどのように変化するかを答えよ。(あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 ケコ ± サシ ・秒後 ス -13- B 図2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

分数の問題です。速さの問題を解いていて、途中までは立式できたのですが、①の式が②になるのがよくわかりません。そういう公式があるのでしょうか…??🥹

市役所上・中級 No. B日程 319 数的推理 流水算 元年度 ルで泳ぐが,Bの静水時の速さはAの静水時の速さの2倍である。 ある地点からAは時計回り 1周が500m の流れるプールがある。 流れは時計回りに流れている。 AとBの2名がこのプー Bは反時計回りに泳ぎ始めたところ, スタート地点から時計回りに200mの地点でAとB が出会った。 12倍 Aの静水時の速さは,プールの流れる速さの何倍か。 23倍 34倍 45倍 56倍 数学 物理 化学 生物 地学 文章理解 判断推理 数的推理 解説 Aの静水時の速さを xm/分, B の静水時の速さを2xm/分, プールの流れる速さを ym/分とお Aは時計回りに泳ぐので,プールの流れる速さのym/分が加算されるので,Aの速さは x+ y[m/分],Bは反時計回りに泳ぐので, 2x-y〔m/分〕 となる。 スタート地点から時計回りに 200mの地点で出会ったので, Aは200m,Bは300m 泳いだことになる。この距離を泳ぐ時間 が等しいので次の式が成り立つ。個 このまではつくれる。 200 300 +01 何でこう変形??? x+y 2x-y ② 200(2x-y)=300(x+y) 4x-2y=3x+3y x=5y これよりAの静水時の速さである.xm/分はプールの流れる速さであるym/分の5倍であるこ とがわかる。 よって、正答は4である。 正答 4

解決済み 回答数: 1
1/8