学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

整数の問題です。play2の?がふってある部分について、いまいち何を言ってるのかよく分かりません…。もう少し噛み砕いて教えて頂くことはできますか?😭😭

77 特別区Ⅰ類20 PLAY 2 最大公約数と最小公倍数の問題 3つの自然数 14, 63, n は、 最大公約数が 7 で、 最小公倍数が882である。 nが300より小さいとき、 自然数nは全部で何個か。 1. 218 2. 318 最大公約数や最小公倍数の性質は理解できたかな? 3. 418 14 = 7 x 2 63=7 n = 7 882 = 7×2×32×7 72×2×32 は300より小さい自然数であることを、しっかり頭に入れて解きましょう。 14,63, n の最大公約数が 7 なので、 n は 7 を約数に持つ、 つまり、7の 倍数ですから、n=7m (mは整数) とおきます。 ×32 4. 518 また、 14 = 7 x 2.63 = 7× 32 ですから、これらを次のように並べ、最 小公倍数が882 = 2 × 32 x 72 になることを考えます。 xm ← -最小公倍数 最小公倍数の 882 は、 14,63, nのすべてで 割り切れる最小の数ですから、これらの数の素因 数 (素数の約数) をすべて含んでいることになり ますね。 しかし、 14, 63 の素因数に 「7」は1つしか ありませんので、最小公倍数 882 の素因数に 「7」 が2つあるということは、nの素因数に 「7」が 2つあることになります。 そうすると、とりあえず、m=7 であれば、 n=7×7となり、 条件を満たすことがわかり ますが、 m には、 その他の 「2×32」の全部ま たは一部が因数に含まれていても、 最小公倍数は 変わりませんので、n は次のような数が考えられ ます。 そうなの?? 5. 618 ない 71882 71126. 2118 319 3 たとえば、 6と9の最小公 倍数 18 は、次のように、 それぞれの素因数をすべて 含む最小の数だよね。 6=2x3 9 = 3×3 18=2×3×3 たとえば、n=7²×2× 3294 とかでも、次の ように素因数は882に含 まれるでしょ!? 14 = 7×2 63 = 7×32 294 = 7²×2×3 882=7²×2×32 m = m m m m m 4 正解

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(1)は解けました😊 (2)と(3)が難しいです、、。 (2)とかは全て正しく読み込めたと仮定する〜から始めたらなんとかいけそうな気するんですけど、そこから手が進まないです、、

12 雑誌を含めて, 全ての書籍に付与されている固有の番号, ISBN (International Standard Book Num- ber) の秘密について考える. 例: ISBN 4910054230772 末尾の「2」は,「チェックディジット」 とよばれるもので, その前の12個の数字列 491005423077が 正しく入力されたかどうか(例えば, バーコードが正しく読み取れたかどうか) を確認するものである. ここで, チェックディジット 「2」は,「491005423077」 から次の規則により定まっている. 1. 先頭位の数字から順番に, 1,3を掛けていく: 4 9 1 005 4 2 3 0 7 7 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 4 27 1 0 0 15 4 630 7 21 2. 得られた数を加えて, 10で割った余りを求める(法10で評価する): 4+27 + 1 + 15 +4+6+3+7+21 = 4 +7+1+5+4+6+3+7+1=8 (mod 10) 3. 得られた数 「8」 を10から引いて, チェックディジット 「2」を得る. 10-8=2. 但し, 2. で得られた数が0の場合は, チェックディジットを0 とする. (1) あなたの手元にある本の ISBN について, チェックディジットを確認せよ. (2) 本の汚れなどの理由で, バーコード読み取り機が,ある1つの数字を読み違えたとする. この間違 いのままチェックディジットを計算すると, その値は、真の値とは異なることを一般的に論ぜよ. (3) バーコード読み取り機が,隣り合う場所にある数字1組についてそれら2つ値を入れ替えて読み 取ってしまった. この場合は間違いの検知率は100% ではない. その理由を一般的に論ぜよ.

解決済み 回答数: 2
1/6