学年

教科

質問の種類

数学 大学生・専門学校生・社会人

こちらのD>0までは分かったのですが、なぜ全ての実数aに対してD>0が成り立つ条件を考える時に図のような直線を元に考えるのでしょうか。また、ここで言う全ての実数aに対して、とは具体的にどういうことなのか分かりません。教えていただける方、よろしくお願いいたします。

Evid 53 面積 (2) xy平面上に,放物線C:y=x2-5x+6と直線l:y=kax-a-5aがある ただし, α, k は実数の定数とする. (1) すべての実数a に対して, lがCと異なる2点で交わるような定数に (2) (1)で求めた範囲にあって, Cとしで囲まれる図形の面積Sがαによら の値の範囲を求めよ. (一橋大) (解答) (1) |y=x2-5x+6 |y=kax-a²-5a ①②からyを消去して整理すると, x²-(ka+5)x+(a²+5a+6)=0 =4(k-2) (6k-13) であるから, D2<0より、 ③の判別式をDとすると, D₁ = (ka+5) ²-4 (a²2+5a+6)=(k²2—4)a²+2(5k-10)a+1 であり、「すべての実数a に対して, lがCと異なる2点で交わる条件」は, 「すべての実数a に対して, D1 > 0 が成り立つ条件」 x=α すなわち, 「すべての実数a に対して, (k²-4)a2+2(5k-10)a+1>0が成り立つ条件」 を考えればよい. ここで, f(a)=(k2-4)a2+2(5k-10)a+1 (=D1) とする. (ア)²-4<0のとき f(a) f(a) は上に凸の放物線となり、条件を満たさない。 (イ)²40 すなわちんく - 2,2くんのとき f(a) のグラフは下に凸の放物線である . f(a) のグラフが横軸と共有点をもたなければよいか ら, f(a) = 0 の判別式を D2 とすると,D2<0で あればよい, よって, -=(5k-10)²-(k²-4).1 =4(6k²-25k+26) 2<k<lo (k<-22<k を満たす) (ウ)k=2のとき C x=B f(a) = 1 であるから、すべての実数」に対して A (ア)²-4<0のとき f(a) (イ) k²4>0のとき f(α) を平方完成して, 頂点に注目して考えるこ ともできるが,平方完成の計算が大変なので、 判別式を利用した方がよい > a f(a) →0 O (ウ) k=2のとき k= f 以上よ (2) ③ C である が成り S S (1 解説 「6 挑戦し 試本番 本門 るが、 とき であ て扱 れを 文系

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。 ③

No9 1.次の広義積分が収束するか、 しないか判定し、 収束する場合はその値を求めよ. 2. 次の広義積分を求めよ. (1) (2) (1) (2) 「 L² (3) L dx 1+22 flog x da dx log sin Ode dx vi dx 1.² √ (12-18) (2-1) 1 x² No10 1. 次の広義積分が収束するようなパラメーターsの範囲を求めよ. (1) 22 (2² + y²) dxdy (3) (1 - cos(x² - y²)) dxdy (1) 120 rdy-ydx, (2) || ( ? – xy + y)dredy 1 2 +92 >1 [0.2m]×[0.2] 2. 次の広義積分が収束するようなパラメーター αβの範囲を求めよ. drdy 1242913083 z²+y² <1 No11 1. 道 Cを時計の逆周りの円+y² = d² とするとき、 次の線積分を求めよ. (2)zdy - yda x² + y² 2. 次の線積分を計算せよ. (1) 道C を z = cos0, y = sin0,z=02, 00 とする. Jo rdx+ydy + zdz, (2) 道 C2 を原点を通らない円 (æ-1)2 + y = 4 とするとき、 rdyydx Ja x² + y² 3. 次の R2 の一次形式のうち、 完全形式となるもの、つまり関数fにより、 df の形 に表せるものを選び、 そのような関数fを一つ与えよ. (1) dy+ydz (2) (3x²+y³)dx + 3xy²dy

未解決 回答数: 0