学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ルートの扱い方を復習していたらよくわからなかったのですが まず、ルートの中が0以上になることはわかるのですが、今までなんとなくしか理解していなかったので教えていただきたいです。 ア→これは右辺が0以上を条件にしていますが、何故ルートの中が0位上と言うのを確認していないの... 続きを読む

-●3 ルートがらみの方程式 不等式を解く (京都産大 (ア)(2.z-2 =1-2.zを満たす実数zの値は である。 (イ)V5-z<z+1を解け。 (ウ)不等式(3-2.r 22.zー1を解け。 (龍谷大·理系(推薦) (東京都市大) ルートがらみの方程式·不等式のことを,無理方程式·無理不生 図形問題を解くときにも現れる 式と言う。教科書的には数Ⅲの内容だが, 図形問題を解くときにも(解法によっては)現れること るので,ここで練習しておくことにしよう。 解くときの注意点 *2乗すると同値性がくずれる. 例えば, A=B=→ A?=B? であるが, A?=B?#A=Ra+ (例えば、 A=-2, B=2のとき, A?=B'だが, A=Bではない). また, AZB# A?2 33であ る(例えば、A=1, B=-2のときを考えよ).「AZB → AB'」という同値変形ができるの は,A20かつB20のときである。両辺が0以上なら, 2乗しても同値である。 *ルートの中は0以上であり, 実際にどのようにするかは, 以下の解答で 2乗してルートを解消するが, その際に注意が必要である. の値は0以上である。 ■解答 ○0のとき,右辺20により 2.ェーェ20であるから, ルートの 中は0以上であることが保証 (ア)(2.z-22 =1-2.r → 2.ェー2=(1-2.x)? 0 かつ1-2.r20 のを整理すると, 5.z?-6.r+1=0 .(r-1)(5.r-1)=0 1 れる。 1-2.r20を満たすェを求めて, x=- 5 コェ+1>/5-ェ N0により, エ+1>0. (イ)/5-r<ェ+1 → 5-x z0かつ ェ+1>0かつ5-ェ<(r+1)? -1<zS5 かつ 22+3.x-4>0 -1<z<5 かつ (エ+4)(r-1)>0 コ-1<r<5のとき, エ+4>0 (ウ)/3-2r >2.r-1…① のとき, 3-2.cN0 3 IS- 2 1° 2かつ 2.z-1<0, つまり ェくうのとき, ①は成り立つ。 介日の右辺の符号で場合分け. @ のとき,①の右辺<0なら①は成 2 1 3 2° 2かつ 2.z-120, つまり 名zハ%のとき, ①の両辺を2乗しても 立。 2 2 同値で、 3-2.z2(2ェ-1)? : 2.22-ェ-1ハ0 4.z2-2.ェ-2<0 :(2ェ+1)(e-1)<0 1であり。zs とから、ら1 3 よって - 2 1°, 2°により, 答えは, x<1 3 演習題(解答は p.55) (ア)方程式(z?+/z +z-l=0を解け。 (イ)不等式V3.?-12 Sz+4を満たすェの範囲を求めよ。 (ウ)不等式(4.ーz" >3-xを満たすェの範囲を求めよ。 (札幌学院大) (明治大·理工) ルートの中は0以上, な; どに注意して解いてい く。 (学習院大·理) 3-2 1 く-を満たす』の値の範囲は (エ) 2r である。 (関西医大)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青チャート数3 例題223(2)の問題で添付二枚目のように解いたのですが構いませんか🙇‍♀️添削お願い致します。

anx 指針>被積分関数が f(cos.c)sinx, S(sinx)cos.x の形 に変形できるときは, それぞれ なお, tan=tとおく方法もある。詳しくは次ページ参照。 371 次の不定積分を求めよ。 [sinx-sin'x 1+cosx dx -dx △ (2) (藤のやフ sinx |p.365 基本事項3 cOS.x=t, sinx=tとおく ことにより, 不定積分を計算することができる。 sinx-sin°x (1-sin'x)sinx cos x 7章 1+cosx 1+cos x sinx f(cosx)sinx の形 1+cosx 32 sinx 1 sin?x 1-cos?x *sinx - f(cos.x)sinx の形 sinx 解答 ) cos.x=tとおくと, -sinxdx=dtであるから cos?x [sinx-sin'x 12 -dt 1+t dx= 1+cosx *sinxdx= A 1+t 1+cos x t+1 1 nia --(-1+aro--+レー1ogl1+d|+C =t-1+ t+1 B |cosx|<1であるが, S= -cos'x+cos.x-log(1+cos.x)+Ce (分母)キ0 からcos xキー1 よって,真数1+cosx は正 である。 |2 coS.x=tとおくと,-sinxdx=dtであるから sinx sinx -dx =-Cos°x dx 被積分関数を Isinx f(cos.x)sinx の形に変形。 1 Idt 1-t dt 1 ユー =--(log|1+|-log|1-t|)+C ニー 2 八1+t ast く 2 c- l0git 1-cosx -log- +C (*)||cosx|^1で(分母)キ0か 1+t - cos x ら cosxキ土1 よって,真数は正。 x tan 2 1 © sin20=2sin@cos@ =2(tanOcos 0)cos0 =2tanOcos°0 を利用。 1 であるから sinx 2tan) x C x tan 2 x "Cos?. tan 0 1-cos 0 dx -dx=log| tan +C (tan?- 2 から, 1+cos0 x tan 2 これは(*)と一致する。 x 次の不定積分を求めよ。 練習 223 ASS cosx+sin2x Jr sin?x (3) \sin'x tanxdx dx COS x C onIDU」 いろいろな関数の不定積分

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

ウォリスの公式の証明についてです。 1枚目の写真の問10が分かりません。 2枚目の写真の様に考えてみたのですが行き詰まって、他のアイディアが思い浮かばびません。 教えて下さい。

前節においては有限区間における有界な関数の積分を考えた。 この節では, $3 広義積分 113 n-1 In = -In-2 (n22). n In -Lh-3. In-e (m-2 0=x/2, h = 1 より (26) を得る。 n(n-2). n(n-2). T。 n …3-1 (n 奇数) ……4-2 ( 偶数) nENに対して, n!!:= M- n-3. n 2T 1-2 n-Ln-3. れ-2 3 とする。このとき, (26) は次のようにかける。 「h 年2 Tw2 (n 偶数) 2 こ4TA M-L-2.In-4 n In = 1-4 u (まスラ0) (n 奇数)。 0<とく要 = h-」.h-2 市困> さて,(O, t/2) で、sin?n+1x ゆえに, 上記の結果より, i. A sin2n x < sin?2n-1 x であるから, I2n+1 < 12n < Izn-1. (:0<qnk<) (n=,t,2, (2n-1)!! π 2 よって, 1 (2n-1)!! π 1 (27) 2n+1 (2n-1)!! 2 2n (2n-1)!! よって れ )1u (28) 21+1 t to 2n+1 1 2 1 2 2n+1 2n T Dah π ゆえに しはさ4うち。里さり、 2 2 = lim 2n. J(2n-1)!!]? (2n(29) Jen Len 方on-! =T n→0 これから, i(に)T 所(an-)! =STE 1 Vェ= lim 22n(n!)? = lim Vn (2n)! (30) ウォリス CWallis) これをワリスの公式という. ニこて Vn (2n-1)!! 1em) n→0 n→0 (2n)! (nコ (2n)!! -@n)-2n-2).4 =An-cn-t) 2·よ 問9 Vれ (n→). An! 問 10 (29) から次の式(これもワリスの公式という)を導け。 1 コ 1 (2n-2)? 1 2 lim {1 22 (2n)? m→0 22 42 62 $3 広義積分

解決済み 回答数: 1