学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ε-δ論法による証明がわかりません。 (1)の波線部の不等式がどこから出てくるのか教えていただきたいです。 ε/2Mというのはどこから出てきたんですか?

基本例題031-8 論法による基本定理の証明 下の指針の定理について, 以下の問いに答えよ。 (1) 下の, 関数の極限の性質の [2], および [3] を,e-8 論法を用いて証明せよ。 (2) 下,合成関数の極限をe-8 論法を用いて証明せよ。 指針定理関数の極限の性質(スロー(x)=(x)ノー 関数 f(x), g(x) および実数 α について, limf(x)=a, limg(x) =β とする。 [1] lim{kf(x) +1g(x)}=ka+1β (k, lは定数) x→a x→a [2] limf(x)g(x)=aB [the lim (1/(x) 定理 合成関数の極限 4179744571 x→a x→b YOU 関数 f(x), g(x) について, limf(x)=b, limg(x)=αとし, g(x)はx=6で連続とする。 このとき,合成関数 (gf) (x) について, lim (gf) (x)=α が成り立つ。会場 x→a x→a x→a x→a xx→a [3] lim x→a f(x) a g(x) B E-8 論法による証明であるから、 「 e を任意の正の実数とする」から始める。そして,これに 対応するの値を検討する。 次のような方針で証明を進める。 f(x) (1) 1 1 の極限を求める問題は、f(x) x- g(x) として g(x) g(x) る。 関数の値と極限値との差の絶対値を評価し,途中でどのような仮定が必要になるかを考 05.10 える。 So I had lot (2) 合成関数g (f(x)) の値を g (f(a)) に近づけるには,gの中にある f(x) をどの範囲で x→a == (ただし,β≠0) eを任意の正の実数とする。 limf(x) =α であるから, ある正の実数品。 が存在して, ()+6011-5 0<|x-a|<品。 であるすべてのxについて|f(x)-α|<s が f(a) に近づければよいかを考え,それに応じてxをどの範囲でαに近づけるか考える。 1o C (+18 解答 (1) 性質 [2] の証明 成り立つ。このとき,α-e<f(x)<α+ であるから |f(x)|≦max{|a-el, |a+c|} S3A/ ここで,M=max{|α-el, |α+el, |β|} とおく。 e≠0 より |a-el, late | の少なくとも一方は0でない から M>0 limf(x) =α であるから,ある正の実数 Ô が存在して E 0<|x-a|<ふであるすべてのxについて|f(x)-al< AMICIAS が成り立つ。 limg(x) =βであるから、 ある正の実数 82 が存在して 1 B を示す問題に帰着させ e-8 論法による証明の 開始。 Jel 4

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

すごく当たり前のことを聞いていたらすみません。黒い線で囲まれた部分の赤とピンクの蛍光色の部分がわかりません。方冪の定理でなぜOX•OA=OY•ODが示されると接線の長さが等しいのでしょうか。

を意味する. 良問 【基礎 0.3.9】 (1995TOT 秋 JO 間4) 三角形 ABC の LA の二等分線と辺BCの交点を M とし, LA の外角の二等分線と直線BC の交点を N とする. また, 三角形 ABCの外接円の点Aにお ける接線と 直線BC の交点を K とする. このとき MK =KN を証明せよ。 B db A M /CK となり, MK AK が得られる. また, LCAN = LNAD より a D N 解答図のように,線分 BA のAの方向への延長上 に点Dを取る. 接弦定理より LCAK = LABM で ある. LBAM=LMAC より LKMA= LBAM + LABM =外角 = LMAC + LCAK = LKAM LKNA + LABM = LNAD = LCAN =LKAN+LCAK ba b であるので, LABM=LCAK 各辺から引いて LKNA = LKAN が得られる. したがって AK = KN である. これと MK = AK より MK =KN がわかる. 0 0 注 Kは直角三角形 AMN の斜辺の中点で, その 外心である. 【基礎 0.3.10】 (1995TOT 春 SA 問3) 台形の互いに平行でない2辺を直径とするふたつの 円を考える. 台形の対角線の交点がこのふたつの円 の外にあるとき、 対角線の交点からふたつの円に引 いた4本の接線の接点までの線分の長さは、 すべて 等しいことを証明せよ. 解答 AD // BC である台形 ABCD の 対角線の交 点をOとする. また AB を直径とする円と直線 AC の A 以外の交点を X とし, CD を直径とする 円 T2 が BD と交わる D以外の点を Y とする. 同じ円に対する2本の接線の長さは等しいの で, 0 から T1, T2 に引いた接線の長さが等しい ことを示せばよい。それには、方の定理から。 OX-OAOY・OD を示せばよい。 三角形 AOD と COB は相似であるから, OC OB である. また三角形 OBX と三角形 OCY は相似である。 (なぜなら LXOB = LYOC, LOXB = LOYC = OC OY であり、ゆえに OB OX つまり OX-OA = OYOD となり 0 90° である) よって = OA OY OD OX' 証明が完了した。 B A AS OA OD D C ●アポロニウスの円 2定点A,B までの距離の比が一定値k (≠1) で ある点Pの軌跡は CD を直径とする円である. こ こで C, D は直線AB上にあり、符号付き長さで AC:CB=AD: DB を満たす2点である. このC. DをA,Bの調和共役点と呼ぶ.

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学オリンピック対策に取り組んだ問題なのですが、ここのいっている意味がよくわかりません。わかる方お願いします🤲

解答 ロッカーの番号を -1 ずらして0番から1023 番のロッカーが並んでいると考える. 最初の往路で は、 二進法で表して末尾が0の番号のロッカーが開 かれ、帰路では末尾から2桁目が1のロッカーが開 かれる. 次の往路では、末尾から3桁目が0の帰路 では末尾から4桁目が1の番号のロッカーが開かれ 交互にあけていく →2進数の発想 解答 一般に,n=1,2,3,... に対する連立方程式 [ x² + x² + · · · + x ² = y³ [x³ + x² +\ ·+x²³² = ₂² 50.2 整数と実数 が、 無限個の整数解をもつことを示す. a1,a2,..., an を任意の相異なる自然数として, s = a² + a² + + a², t = a³ + a² + … + a²³²2 <. ここで mi = smtkai とおくと ← ??? 【基礎0.2.8】 (1985USAMO問1) 連立方程式 : x² + x ²/² + + 1² = 8²m+1₁2k (x³ + x²³² + ... · + 1²₁/12: = 83m43k+1 となる. そこで, s2m+142k = 13,83mt3k+1 = 22 (y, 2 はある正の整数) を満たすように自然数m,n を定め ればよい. そのためには, 2m+1= 2k = 0 (mod 3) と3m=3k+1 = 0 (mod 2) を満たしていればよい のだから, m=4 (mod 6) かつk = 3 (mod 6) であ ればよい. このように Ti, y, z を定めれば、問題の連 立方程式を満たす. (1²+1²+₁+2985 = y³ x³ + x² + +1985=22 を満たす正の整数 y, 及び相異なる正の整数 π1) 21..., 1985 は存在するかどうか判定せよ. 呼ばれる。 分母と分子が整数である分数として表せる数を有 「理数という. 有理数(分数) を小数で表すと, 有限小 数または巡回小数になる。 逆に有限小数や巡回小数 で表せる数は分数で表せる. 巡回小数でない無限小数で表される数を無理数と いう. 有理数と無理数をあわせて実数という. 【基礎 0.2.9】 (1989AIME 問3 ) n は正の整数, dは十進法で1桁の数で TL = 0.d25d25d25... 1810 となるという. このようなn を求めよ. 13 解答 与えられた方程式より 999n 810 を得る.この両辺を 810倍し,両辺を27で割ると, =100d +25

解決済み 回答数: 1