学年

教科

質問の種類

数学 大学生・専門学校生・社会人

だれか空いてる時間に過去問解いてくれませんか?

経済・法・文・外国語・教育・医療技術 解答のみを解答欄に記入しなさい。 ただし、 数が最小となる形とし, 分母は有理化する 一数で答えること。 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし、 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし、分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 x2を因数分解すると =6-2√2 - α とするとき 円に内接する四角形ABCD において, AB5, BC = 3,CD = 2. ∠ABC=60° 2つの対角線 ACとBDの交点をEとする。 このとき. (1) AD= ア BD = イ 四角形ABCD の面積は ウ である。 BE (2) = エ であり, BE = オ である。 1,62}について, ACBであり, b= オ である。 ED V V E L S V P q 0 S 3 1 欄に記入しなさい。ただし, 形とし, 分母は有理化する 〔4〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 点 (21) であるとき 向に1だけ平行移動し る。 (1) 下の図が, あるクラスで行ったテストについての, 37人の得点の箱ひげ図である イ とき、このデータの範囲は ア ウ である。 四分位範囲は 四分位偏差は

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)どう計算してるんですか? 書いて欲しいです、、

次の等式を示せ。 (1) 1-tanh2x=- 1 cosh2x (2) sinh(x+y)=sinhx cosh y±coshx sinhy- 当 (3) cosh(x±y)=coshx coshy±sinhxsinhy 指針 双曲線関数の定義式 sinhx=- e-e-* 2 cosh.x=_extex tanhx=- e*-e-* (1) 関数 また、 Blim xa 2 e*+e** と、等式 coshx-sinhx=1 を利用して式変形を行う。 等式 A=B の証明の方法は,次のいずれかによる。 (2) x- これ [1] AかBの一方を変形して,他方を導く (複雑な方の式を変形)。 [2] A, B をそれぞれ変形して,同じ式を導く。 [A=C, B=C⇒A=B] [3] A-B=0 であることを示す。 [A=B⇔A-B=0] ここでは, [1] の方法で証明する。 (3) 任 あ とな x= り立 ex-e-x 解答 (1) tanhx= であるから extex 1-tanhx=1-(ex-e_x)= (e2x+e-2x+2)-(e2x+e-x-2) daia そこ ま (exte-x)2 dale deob ad (ex + e¯x)² = (ex + ex )² 2 cosh2x 2 ex-e-x (2) sinhx= coshx= 2 exte-x 2 ey-e-y ete- がはこ sinhy=- 2 coshy=2 であるから sinhx coshy ±coshx sinhy= ex-exte-y exte e-e -y ・土・ (4) ネ 2 2 4 lexty_ -e-(x±y) 2 ex-ex (3) sinhx=- (ex+x+ex-x-e-x+y—e¯¯³) ± (ex+y—ex−y + e −x+y-e¯x-y) sin(x±y) (複号同順) 2, coshx= t=e exte-x 2, sinhy= であるから cosh x coshy±sinhx sinh y=- exte¯* e³te¯ e-ex e-e- 2 2 ・土・ (ex+x+ex-y+e¯x+y+e¯*¯³) ± (e*+y—ex-y-e-x+x+e-x-3) 4 2 exty te - (x+y) 2,coshy= 2 ま (6)x で COS 更 ま sete

解決済み 回答数: 1