学年

教科

質問の種類

数学 大学生・専門学校生・社会人

資料解釈の問題です。 肢4の「2級以上進級した生徒」が何故この部分になるのか、表の見方がよく分かりません。どなたか教えて頂けないでしょうか🥲

ていれ る企 ね! す Unit 9 PLAY 3 次は、あるバレエ教室に通う生徒の昨年4月及び今年4月における在級状 況(人数) を示した表である。 これから確実にいえるのはどれか。 ただし、選択肢中にある 「この期間」とは、昨年4月から今年4月までの 期間をいう。 していき、降級することはない。 また、 「退会」 の項は、昨年4月時点で在籍 なお、この教室では、 生徒は随時、テストを受けて6級から1級まで進級 していたが今年4月の時点で在籍していない者の数を示しており、新規の入会 者については考慮しないものとする。 今年4月 昨年4月 1級 2級 3級 4級 5級 6級 (単位:人) 1級 2級 3級 4級 5級 6級 退会 5-5 国家一般職 2015 3 863 16 10 6 4 21 11 27 7 28 30 34861 11 1. 在籍者全体に占める 1, 2, 3級の生徒の割合をみると、 今年4月は昨年4 月に比べて減少した。 2. 今年4月の在籍者全体に占めるこの期間に進級した生徒の割合は、40% を 超えている。 3. この期間に進級した生徒の中で、今年4月の時点で 4,5級の生徒の割合は、 80%を超えている。 4. 今年4月の在籍者全体に占めるこの期間に2級以上進級した生徒の割合は、 20%を超えている。 5. 1級以上進級した者は、今年4月の方が多い。 まず、合計の人数を計算してしまったほうが早いかも! 66

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。 ③

No9 1.次の広義積分が収束するか、 しないか判定し、 収束する場合はその値を求めよ. 2. 次の広義積分を求めよ. (1) (2) (1) (2) 「 L² (3) L dx 1+22 flog x da dx log sin Ode dx vi dx 1.² √ (12-18) (2-1) 1 x² No10 1. 次の広義積分が収束するようなパラメーターsの範囲を求めよ. (1) 22 (2² + y²) dxdy (3) (1 - cos(x² - y²)) dxdy (1) 120 rdy-ydx, (2) || ( ? – xy + y)dredy 1 2 +92 >1 [0.2m]×[0.2] 2. 次の広義積分が収束するようなパラメーター αβの範囲を求めよ. drdy 1242913083 z²+y² <1 No11 1. 道 Cを時計の逆周りの円+y² = d² とするとき、 次の線積分を求めよ. (2)zdy - yda x² + y² 2. 次の線積分を計算せよ. (1) 道C を z = cos0, y = sin0,z=02, 00 とする. Jo rdx+ydy + zdz, (2) 道 C2 を原点を通らない円 (æ-1)2 + y = 4 とするとき、 rdyydx Ja x² + y² 3. 次の R2 の一次形式のうち、 完全形式となるもの、つまり関数fにより、 df の形 に表せるものを選び、 そのような関数fを一つ与えよ. (1) dy+ydz (2) (3x²+y³)dx + 3xy²dy

未解決 回答数: 0