学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例1.5の波線のところがわからないです お願いします

連続 A.1 1.2 数列の極限 13 極めて近いところにいる,ということを述べている (図 1.1 を参照せよ) この番号 no は一般にに依存しており,eを小さくすると,それに応じて no は大きくとらな ければならない. したがって, no = no (e) と書いておくとわかりやすいであろう. a - ea ate + + ↓ n ≧ no ならば an は常にこの区間内にある 図 1.1 極限 α = lim an の概念図 縦線は数列の各項 an を表す. n→∞ ここでは記号を用いて数列の収束を定義したが, その定義に従って記号を 用いて) 数列の収束を議論する論法は論法あるいは e-N論法とよばれている. 1 n→∞n 例 1.5 直感的には自明な極限 lim = 0 は, Archimedes の公理 (定理 1.2) り論理的に厳密に導くことができる.実際, 任意の > 0に対して (a=1,6=e と して) 定理 1.2 を用いると, 1 < noe を満たす自然数no が存在することがわかる. このとき, no を満たす任意の自然数nに対して, 1 < no ≤ne が成り立つの で,この両辺をxで割ると 0</m/ <e, それゆえ |-- 0 <e が成り立つ.以上の ことをまとめると, t VE 03 € NVn EN n (n ≥ no ⇒ = 1 - 0 | << e) n 1 が成り立つことが示された. したがって, lim 20が成り立つ. n→∞n こんな当たり前なことをなぜ難しい論理記号を用いて証明するのか?という疑問 をもつ人も多いであろう.しかし,このような e-N論法を用いないと証明するのが 非常に困難になるような問題も多数ある. そのような問題の一例としてよく引き合 いに出されるのが次の例である. 例 1.6 lim an = ( αならば次式が成り立つ. 818 a1+a2+..+? No. Date

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

下から6行目が分かりません。 「f'(x)に上の公式を適用~」とありますがε1は微分されてないのは何故でしょうか?上の方にε1はxの関数と書いてあるので定数ではないですよね? また、下から2行目の「最後の項をε2とおくと~」で (6)式でなぜε2/(x-a)²の極限をとっ... 続きを読む

第1章 関数の展開 問1 次の関数の() 内の点における1次近似式を求めよ。 (1) f(z) = sin e (r=0) (2) g(r) = V ("=1) (2) 式において、左辺から右辺を引いた差で定まるeの関数を e, とおく。 f(x) - f(a) -f(a)(2-a) %3D €y 関数 E,= €, (z) はaを含む区間で連続で リ= f(z) lim e, = €, (a) =0 エ→a となる、さらに、 (3) を変形した式 f(x) E1 f(x) - f(a) E1 -f(a) = C-a -a と(1)より、次の式も成り立つ。 f(a) f-to- foalcce - falGca, E」 lim = 0 エ→a C ーa (3), (4) より次の公式が得られる. 1次式による近似 E1 f(x) = f(a) + f (a) (x-a) +£. ただし lim = 0 エ→a C - 0 次に,関数f(z)は定数aを含む区間で2回微分可能とする。 f'(z) に上の公式を適用すると f(z) = f(a) +f"(a)(x-a)+e 両辺をaからまで積分して | r() da= | f) +"@(a-a)+s,}dr a f"(a) f(x) - f(a) = f(a)(r-a)+(-a)"+ / e, de (5) 2 右辺の最後の項を ea とおくと, ロピタルの定理と(4) より E2 Eg E1 lim (r-a)? lim lim 2(r -a) = 0 ニ エ→a エ→a エ→a

解決済み 回答数: 1