学年

教科

質問の種類

数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

[III] 1辺が1の正三角形 ABCにおいて, 辺BC, CA, AB 上にそれぞれ点D, E, Fをとる。 ここで, BD = p, CE = q, AF =rとし, 0<p<1, 0 <q<1,0<r<1とする。また,直線 (8) (1) 中文本ー AD と直線 BE の交点をGとし, ADEF の面積をSs とする。 e o ene 1 u ovitni 次の問いに答えよ。 [I]次の問いに答えよ。 (1) ACDE の面積を p, qを用いて表せ、また, Sをp, g, r を用いて表せ。 deiddus d Baal t (1) 0SSで, y= sin? ェ+6sin z cos.z +7cos"zの最大値と最小値を求めよ。 (2) CG をp, q, CA, TH を用いて表せ、 (2) 点Pがェ軸上の原点にある. コインを投げて, 表が出たらPをェ軸上, 正の方向に1だけ (3) 直線 CF が点Gを通るときのァをP, qを用いて表せ。 移動させ,裏が出たらPを負の方向に1だけ移動させる。コインを8回投げるときに, 8回 とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 (4) r= ad m 1 目でPがはじめて原点に戻ってくる確率を求めよ。 () r=と とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 do (3) 整式 P(z) を-4-2で割ると余りがェー1,z?-2a-3で割ると余りが3z+1,?-1で ed ha otdimi dd ce ow 割ると余りがェー7である. P(z) をポー6z?+11z-6で割ったときの余りを求めよ。 O (4) a」 = 1, an+1 = abe Jedl volud liotmi1go ofqpg smo an によって定められる数列{am} がある.このとき, {an}の一般項を he bnd b) 4a, +5 vel evd noenon don 求めよ。 0geigtabmatm o 6 m shi sigmyO nnio adT (5) 不等式 2"<9637 < 20+1 をみたす整数nを求めよ, ただし, 必要であればlog1o2 =D 0.3010, de mO n blo a b log1o3 = 0.4771を利用せよ。 o o smd o o agnig エ+1 o gdhos lbaoh o d d dnodeab amn o 20d anichb bomd p [II」 4,6を正の定数とする。f(z) = al+ 1|+b -1」 とし, S(z) = - とおく 1 dO bom bi Tashi Jao d dip boboano als anwamduc) n0 次の問いに答えよ。 (1) a=1,6=2の場合,関数y= S(z) のグラフを描け. n dto u TO 20m TO (2) 0<a<bの場合, 関数y =D f(z)の最小値を求めよ,d aag t o 1-4 S0 (3) a= 1,6=2の場合,-2<z< -1において, S(z) をェの整式で表せ。 (4) 関数y=S(z)が偶関数であるための a,bの満たすべき条件を求めよ。 (5) 0<a<bの場合,関数y= S(a) の最小値を求めよ. bh got o o sl gndhai anew yad) ro dw m0 d do ow w

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください!全然分かりません!

位角と見上げた角度で表して考えることにした。 水平面での角度であり, 例えば, 北東の位置の方位角は 45°である。 見上げた角度は飛行機を見上げたときの角度と さ西 視線の方向 し,例えば、視線の方向と水平面に平行な面でで きる角度が_50-のとき, 見上げた角度は「50°で あるとする (図1)。 50° 以下の会話文を読んで, 次の問1~問3に答え 見上げた角度 なさい。ただし, 観測をしている間は, 飛行機は 一定の速さで一直線上に進み, 高度は変わらない ものとする。また, 目の高さは考えず, 高度は水 水平面 図1 平面からの高さとする。 達也さん「方位角120° の地点 Aの上空を飛行機が飛んでいるとき,見上げた角度は 30°だった。その後,方位角.90°の地点Bの上空を飛行機が飛んでいるときは、 見上げた角度は 45° だったよ。」 四Om 静香さん「学校の地点を0として上空から見た図をつくると図2のようになるね。飛 行機の進行方向の方位角は, 図2の直線を点0を通るように平行移動したと きの進行方向の位置の方位角になるから, この Zxの大きさを求めればわか るんじゃないかな。」 達也さん「じゃあ, まず飛行機の高度をん (m)としよう。飛行機が通過する地点 A, B の上空をそれぞれ P, Qとすると図3のようになるね。」 静香さん「△OAP, △OBQは直角三角形だから, OB=h(m), OA= ア le (m) だね。」 達也さん「図4のように, Aから南北の直線に垂線をひいてその交点をH, Bから HA に垂線をひいてHAとの交点をLとしよう。 すると, HA=| イ |h (m) となるね。これで, Zrの大きさが求められそうだ。」

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題のAを最大角として断るのはなぜですか?

o00 いような定 計>D.117 基基本例題 72 と同じように, 計算がらくになる 工夫をする。 この例題では,各辺の垂直二等分線の方程式を利用するから, 各辺の中点の座標に分数が 現れないように, A(2a, 2b), B(-2c, 0), C(2c, 0) と設定する。 座標を利用した証明 (2) 基本 例題 85 ま本 78,82 OOOO0 基本12 ] 座標に0を多く含む 座標の工夫 2 対称に点をとる 3章 13 答 Aを最大角としても一般性を失わな D。このとき, LB<90°, ZC<90° 注意 間違った座標設定 例えば、A(0, b), B(c, 0), C(-c, 0) では,△ABC は 二等辺三角形で、 特別な三角 形しか表さない。 座標を設定するときは, 一般 性を失わない ようにしなけ ればならない。 A(2a,26) である。 N M K 分線をy軸にとり, △ABCの頂点の 座標を次のようにおく。 A(2a, 2b), B(-2c, 0), C(2c, 0) B \C 2c x OL 証明に直線の方程式を使用 するから, 分母=0 となら ないように,この条件を記 している。 ただし a20, b>0, c>0 また,ZB<90°, ZC<90°から, aキc, aキーcである。 更に, 辺BC, CA, ABの中点をそれぞれL, M, N とする L(0, 0), M(a+c, b), N(a-c, b) 辺ABの垂直二等分線の傾きをmとすると, 直線ABの傾き =-1より と表される。 と。 +c 0-26 b m=- b 三 であるから, m. -2c-2a atc は atc atc 4点N(a-c, b) を通り, 傾 よって,辺 ABの垂直二等分線の方程式は atc の直線。 b atc ソーb=-! 6 (x-a+c) 0: a+6-C atc x+ ソ=ー の すなわち b b 辺 ACの垂直二等分線は、 辺ACの垂直二等分線の方程式は, ①でcの代わりに -cと α+8-c b b の直線 ACに a-c 傾き a-c y=ー + 垂直で,点M(a+c, b) 通るから, 0でcの代: りに -cとおくと, そ。 程式が得られる。 おいて b 2直線の, ② の交点をKとすると, 0, ②のy切片はともに a"+6-C? ゲービ) a+8-c であるから K(0. b 点Kは、y軸すなわち辺BCの垂直二等分線上にあるから, AABC の各辺の垂直二等分線は1点で交わる。 直線の方程式、2直線の関係

回答募集中 回答数: 0