学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数1の一次不等式単元、 絶対値記号をxを場合分けして外す問題で、 やり方は分かっているのですが、 <2>の(1)や(2)の問題で場合訳をする際に 何故、x>3ではなく、 x ≧ 3 なのでしょうか? 逆に  何故、x ≦3ではなく、 x<3 なのでしょうか? 場合分けする... 続きを読む

[2] 次の式の絶対値記号をxの値によって場合分けしてはずせ。 (1) |x-3| (2) | 4x+8| ACTION 絶対値記号は、記号内の式の正負で場合分けしてはずせ 解法の手順 絶対値記号内の式値の 正負を考える。 32の結果と値の範囲を まとめて書く。 解答 [1] (1) √5= 2.236・・・ より √5-1>0 であるから Act 15-1|=√5-1 (2) = 3.14・・・ より, 3-π<0であるから |3-²|=-(3-²)=π-3 Act [2] (1) x-3の正負で場合分けすると (ア) x-3≧0 すなわち x≧3 のとき |x-3|=x-3 (イ) x-3 < 0 すなわち x<3のとき |x-3|=-(x-3)=-x+3 x-3 (ア)(イ)より |x-3| = -x+3 (2) 4x+8 の正負で場合分けすると (ア) 4x+8≧0 すなわち x≧-2 のとき |4x+8| = 4x+8 (イ) 4x+8 < 0 すなわち x <-2のとき |4x+8| = -(4x+8) = -4x-8 4.x +8 (ア), (イ)より 14x+81={- -4x-8 21 の符号に応じて絶対値 記号をはずす。 POINT (絶対値記号) (x≧0のとき) {-2x l-x (x<0のとき) (1) |x| = (x ≥ 3) (x<3) (x-2) (x-2) 絶対値記号内の値が正の 場合はそのままはずす。 絶対値記号内の値が負の 場合は, マイナスをつけ てはずす。 olas 絶対値記号内の式x-3 の正負で場合分けする。 等号は(ア), (イ) のどちらに 含めてもよい。 最後に結果をまとめる。 絶対値記号内の式4x+8 の正負で場合分けする。 最後に結果をまとめる (x≧αのとき) (2) x-a={x(x<①のとき)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

下から6行目が分かりません。 「f'(x)に上の公式を適用~」とありますがε1は微分されてないのは何故でしょうか?上の方にε1はxの関数と書いてあるので定数ではないですよね? また、下から2行目の「最後の項をε2とおくと~」で (6)式でなぜε2/(x-a)²の極限をとっ... 続きを読む

第1章 関数の展開 問1 次の関数の() 内の点における1次近似式を求めよ。 (1) f(z) = sin e (r=0) (2) g(r) = V ("=1) (2) 式において、左辺から右辺を引いた差で定まるeの関数を e, とおく。 f(x) - f(a) -f(a)(2-a) %3D €y 関数 E,= €, (z) はaを含む区間で連続で リ= f(z) lim e, = €, (a) =0 エ→a となる、さらに、 (3) を変形した式 f(x) E1 f(x) - f(a) E1 -f(a) = C-a -a と(1)より、次の式も成り立つ。 f(a) f-to- foalcce - falGca, E」 lim = 0 エ→a C ーa (3), (4) より次の公式が得られる. 1次式による近似 E1 f(x) = f(a) + f (a) (x-a) +£. ただし lim = 0 エ→a C - 0 次に,関数f(z)は定数aを含む区間で2回微分可能とする。 f'(z) に上の公式を適用すると f(z) = f(a) +f"(a)(x-a)+e 両辺をaからまで積分して | r() da= | f) +"@(a-a)+s,}dr a f"(a) f(x) - f(a) = f(a)(r-a)+(-a)"+ / e, de (5) 2 右辺の最後の項を ea とおくと, ロピタルの定理と(4) より E2 Eg E1 lim (r-a)? lim lim 2(r -a) = 0 ニ エ→a エ→a エ→a

解決済み 回答数: 1