学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数1の一次不等式単元、 絶対値記号をxを場合分けして外す問題で、 やり方は分かっているのですが、 <2>の(1)や(2)の問題で場合訳をする際に 何故、x>3ではなく、 x ≧ 3 なのでしょうか? 逆に  何故、x ≦3ではなく、 x<3 なのでしょうか? 場合分けする... 続きを読む

[2] 次の式の絶対値記号をxの値によって場合分けしてはずせ。 (1) |x-3| (2) | 4x+8| ACTION 絶対値記号は、記号内の式の正負で場合分けしてはずせ 解法の手順 絶対値記号内の式値の 正負を考える。 32の結果と値の範囲を まとめて書く。 解答 [1] (1) √5= 2.236・・・ より √5-1>0 であるから Act 15-1|=√5-1 (2) = 3.14・・・ より, 3-π<0であるから |3-²|=-(3-²)=π-3 Act [2] (1) x-3の正負で場合分けすると (ア) x-3≧0 すなわち x≧3 のとき |x-3|=x-3 (イ) x-3 < 0 すなわち x<3のとき |x-3|=-(x-3)=-x+3 x-3 (ア)(イ)より |x-3| = -x+3 (2) 4x+8 の正負で場合分けすると (ア) 4x+8≧0 すなわち x≧-2 のとき |4x+8| = 4x+8 (イ) 4x+8 < 0 すなわち x <-2のとき |4x+8| = -(4x+8) = -4x-8 4.x +8 (ア), (イ)より 14x+81={- -4x-8 21 の符号に応じて絶対値 記号をはずす。 POINT (絶対値記号) (x≧0のとき) {-2x l-x (x<0のとき) (1) |x| = (x ≥ 3) (x<3) (x-2) (x-2) 絶対値記号内の値が正の 場合はそのままはずす。 絶対値記号内の値が負の 場合は, マイナスをつけ てはずす。 olas 絶対値記号内の式x-3 の正負で場合分けする。 等号は(ア), (イ) のどちらに 含めてもよい。 最後に結果をまとめる。 絶対値記号内の式4x+8 の正負で場合分けする。 最後に結果をまとめる (x≧αのとき) (2) x-a={x(x<①のとき)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

 微分方程式についての質問です。  写真はある円の微分方程式を求める方法について2通りの説明をしています。  赤枠の部分がどのような過程で求まったのかが分かりません。  自分は △PTA∽△QPA ∴∠QPA=∠PTA=θ ∴AQ=PQtanθ だと思いました。 ... 続きを読む

(I-1図参照),この円群に属する円を任意にとり, その中心を, A(c,0) とすれ である。ところが, PA と PTは直交するから, I-1図からわかるように I- 第1章 微分方程式 2 平面上で、エ軸上に中心をもち, 半祐一定の長さょである回m. ば、この円の方程式は YA --y=r P(エ) P T A(c0) 0 X リ=ーr I-1図 (ェ-c)+ y° =r? である。ここで,定数cに種々の値を与えることによって,この円群に属士る すべての円の方程式が得られる。そこで, この(1)をいま考えている円群の方 程式という。また,定数cには任意の値を与えることができるから, cを任意 定数という.さて, この円群に属するすべての円が共通にもっている性質を求 めるために,方程式(1)から出発して任意定数cを含まない関係を求めよう。 そのために,(1)の両辺をェで微分すれば (z-c)+ y = 0 が得られる。そこで, (1) と (2) から文字cを消去すれば dy + y° = r? de が得られる。これが求めている共通性質であって,これは1階微分方程式での る。さて,I-1図のように,点 A(c.0)を中心とする円群に属する円を考え,て の上に任意の点P(x, y) をとり,点Pにおける接線を PT とすれば PQ? + AQ? = AP? =D r

解決済み 回答数: 1