学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートの練習問題43についてです。 自分は2枚目の答案のように考えたのですが、答えがあいません。間違いを教えてほしいです。

Vim B組 : 男子4人, 女子1人 練習 2つの組 A,Bがあって,各組は次のように構成されている。 ② 43 A組: 男子2人, 女子3人; この2つの組を合わせた合計10人の生徒から任意に3人の委員を選ぶとき (1) 3人の委員の中にいずれの組の女子生徒も含まれる確率を求めよ。 (2) 3人の委員がB組の生徒だけになるか, または男子生徒だけになる場合の確率を求めよ。 ならま! (1) B組の女子生徒1人は,必ず含まれるから、 次の場合が考え られる。 [1] A組の女子生徒2人が含まれる場合 ← [2] の場合 [2] A組の女子生徒1人が含まれる場合 事象 [1],[2] は互いに排反であるから,求める確率はAの女子3人から11 3C3C1×6C1_ + 30 3 18 7 A,Bの男子6人から tx 1人を選ぶ 。 10 C3 10C3 120 120 40 (2)3人の委員が, B組の生徒だけになるという事象を E, 男子 生徒だけになるという事象をFとすると 5C3 P(E)= P(F)= 10C3' よって, 求める確率は + 人の生徒から任意! 6C3 10C3' 13 60 P(EUF)=P(E)+P(F)-P(E∩F) 10 20 + 120 120 - 4 120 08=5do P(EnF)= 4C3 = 10C388 10C30 ) SIME÷8+8= TE 個以 [1] ←ENFはB組の男子 人から3人を選ぶという 象。 ←直ちに約分しない方が 後の計算がらく。 [2] しか 練 ③ 4

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

【ε-δ論法_連続性の証明】 参考書内の演習問題についてです。 以下①~③の3点教えてください。 ▼画像の赤枠について ・①なぜ|x-1|²がδ²に変化するのでしょうか? ・②δ² + 4δ - ε = 0がなぜδ = -2±√(4+ε)になるのでしょうか? ... 続きを読む

lim∫(x)=f(1) を示すための - 論法は次の通りだ。 x→1 > 0, 80s.t. 0<x-1|<8⇒\f(x) f(1)| <e 解答&解説 Yɛ>0, ³8>0 s.t. 0<|x-1|<8⇒\ƒ(x) −ƒ(1)|<ɛ (*) このとき, lim f(x)=f(1) となって, f(x)はx=1で連続と言える。 ナ 正の数』をどんなに小さくしても、 ある正の数 が存在し, 0<x-1|<8 ならば、 || (x) - f(1) | <e となるとき, limf(x)=f(1) が成り立つ。 連続条件 よって, (*)が成り立つことを示せばよい。 0<|x-1|<8のとき, |f(x) f(1)|=|x'+2x-3|=|(x-1)(x+3)| = |(x−1){(x−1)+4}| =|x-1+4|x-1|- < 82+48 1²+2+1=3 公式: ||A+B|≦|A|+|B|| を使った! + ヒント! が成り立つことな 解答&解説 Y>0, ³8 f(x) f(1) | <82+48 < g をみたす正の数 8 の存在を 示せばよい。 82 +48g < 0 をみたす の範囲をで表す。 このとき, lim よって, (* 0<|x-2 ( ':' |x-1|<8) ゆえに,正の数がどんなに小さな値をとっても, 8' +48 - <0 をみたす正の 数δ が存在することを示せばよい。 この不等式を解いて、 -2-√4+ <8<-2+√4+8 百 8 の2次方程式: 82+48-8 = 0 の解δ=-2±√4+6 これを使った! lg(x よって,どんなに小さな正の数が与えられても, 8 <-2+v4+c をみたす正 の数 8 が存在するので, (*)は成り立つ。 これで, f(x) が x=1で連続であることが示された。 … (終) W

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数的処理の問題です。2枚目の写真の中段にあるa+b+f+37=91とはどこの部分を足したのでしょうか?また、ベン図にあるa,b,cなどの小文字は何を表しているのですか?

あるスタジアムで行われたAチームとBチームとのラグビーの試合の観客 250人について、応援したチームと持ち物を調べたところ、次のことが分かっ た。 ア 観客は全て大人か子供であり、Aチーム又はBチームのどちらか1チーム を応援した。 観客は、メガホンかうちわのどちらか一つを持っており、両方を持って いる観客はいなかった。 う ウ Aチームを応援した観客は138人であった。 エメガホンを持っていた観客は159人であった。 このうちAチームを応援 した大人は72人であった。 オうちわを持っていた子供は11人であった。 カ Aチームを応援し、 うちわを持っていた観客のうち、大人は37人であっ た。 キ Bチームを応援し、うちわを持っていた観客のうち、大人は子供より36 人多かった。 以上から判断して、観客のうち、 Aチームを応援し、メガホンを持っていた子 供の人数として、正しいのはどれか。 + 1.17人 2.19人 3.21人 4.23人 5.25人 集合算の最も典型的な パターンだよ! 条件ア、イより、Aチームを応援した観客 (以下 『AI),大人, メガホンを持っていた観客(以下『メガ ホン」)の集合をベン図で表し、3枚のベン図が互いに 交わりを持つよう、図のように描きます。 まず、条件ウ、エ、カより、Aは138人、メガホンは159人、 (A, 大人, メガホ Aの外側がB、 大人の外 側が子供、メガホンの 外側がうちわだからね。

解決済み 回答数: 1