数学 大学生・専門学校生・社会人 約1ヶ月前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください 数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 εが任意だから赤線のように置かれているのがわかりません🙇♀️ n! (2) 1.3.5... (2n-1) ーの例題については, 演習問題2で解説する 1 それでは,ダランベールの判定法で, (i) 0≦r<1の場合に、なぜ 項級数が収束するのか,その証明を入れておくよ。 (i) 0≦r<1の場合 an+1=rのとき,これを-N論法で書き換えると、 n→∞ an >0,N>0s.t.n≧N ⇒ an+1- | a n + 1 = r | << & an となる。 1-L ( > 0) とおいてもいい。 す 20 ここで, e は任意より,c= 2 これが, 証明のコツ n=N,N+1,N+2,... のとき, この部分のみを変 an+1 -r< an 2 水上より1 < an+1. 1-r -r< an 2 an+1<rt an 1 1+r 2 2 = 2 ≦R 0≦r <1より, 1≦1tr<2 1 1+r -≤ 2 2 未解決 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 2ヶ月前 (1)から分かりません。なぜこのようなグラフになるんでしょうか? 123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 一次不定方程式の問題です。黄色い線で囲ってある問題の解説にあった赤線の意味がわかりません。どなたか教えてください💦 きの \ 練習 次の方程式の整数解をすべて求めよ。 ② 136 (1) 12x-17y=2 (2) 71x+32y=3 (3)73x-56y=5 p.568 EX 93, 94 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 下記リンクのGeoGebra幾何にて、軌跡機能を用いてアポロニウスの円を描いてみたいのですが、 下記リンクのYahoo知恵袋にて記載されている画像の方法では描けませんでした。 具体的には、 「数aのスライダを設定します. A中心半径2aの円cと, B中心半... 続きを読む AP: BP=2:1 となる点Pの軌跡を図示します。 平面上に2定点A,Bをとります。 数aのスライダを設定します。 A中心半径2aの円cと, B中心半径aの円dを描きます。 c,dが交わるように,aの値を調整した上で, a = 2.98 cとdの交点C,Dを描きます。 a = 2.37 C,Dを残像表示に設定し, aのアニメーションをONにします 必要に応じてaの範囲を設定すれば, 点の集合としての軌跡が描かれます (上図). また、 「軌跡」のボタンを使い, a, Ca, Dとクリックすれば (Caの順でもよい), それぞれの軌跡がloc1, loc2のように描かれます (下図). C A A doc1 B loc2 未解決 回答数: 0
数学 大学生・専門学校生・社会人 4ヶ月前 2枚目の写真の下線部部がよくわかりません。 1、2、3、4、5の5つの数字を使って3けたの整数を作る。 同じ数 複して使うことはできないものとする。 ①各けたの数字が異なる奇数は何通り作れるか。 OA 6通り ○E 24 通り ○160通り OJ OB 8通り OC 12通り OD 16 OF 32 通り OG 36通り OH 48 通 A~I のいずれでもない ②各けたの数字が異なる3の倍数は何通り作れるか。 OA 6通り OB 8通り OC 12通り OD 16週 ○E 24 通り OF 32通り OG 36 通り OH 48 01 60通り OJ A~Iのいずれでもない 未解決 回答数: 1
数学 大学生・専門学校生・社会人 4ヶ月前 (3)の問題なのですが、もともとのQ市の人口を求める時に、『項目A÷項目B』になるのはなぜですか? 練習 4 下表は、 P~Wの8つの州から構成されている大国の自動車保 状況をまとめたものである。 項目 A 項目 B 人口1000人 項目 C 台数(台) 面積 1km² あたりの台数 あたりの台数 P 251.4 1.26 198.7 0108 21.1 0 336.2 3.21 104.6 0.11 38.6 R S 459.7 3 153.0 0.14 68.6 512.4 2.15 237.7 08 0 41.0 T 365.4 1.58 230.7 0,16 58.9 U 1025.4 2,55 401.3 0.06 64.1 V 211.7 2089 235.5 0.11 24.9 W 647.7 1.99 1,89 343.6 0.11 75.3 未解決 回答数: 1
数学 大学生・専門学校生・社会人 4ヶ月前 代数学の🔟(2)を教えていただきたいです💦 10 次の問いに答えよ。 (1)2つの直線 4x-1= +3 2 12: =-y+2= +2=-1, a0 が交わるように, 実数の定数の値を定めよ. また, そのときの交点の座標を求めよ. (2) 2つの平面 P1: x+2y-2z=4, P2: 3-y+8z = 5 が交わったところにできる直線の方程式を求めよ. (3)3点A (1,0,0), B (2,30) C (-1, 0, 6) を通る平面 P と2点D (3,54), E (-3, -1, 1) を 通る直線がある. このとき, 平面 P と直線の交点の座標を求めよ. (4) 点 P, Q がそれぞれ次の直線1, 42上を動くとき, 線分 PQ の長さの最小値を求めよ. 4: 2+1 y 3 -2 4 =z. 12: x-2= =-+1. 2 回答募集中 回答数: 0