学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計分野の二項分布問題の解き方が分かりません どなたか教えていただきたいです!

第2問 ある植物の花の色は、 2 対立遺伝子 (A,a) のメンデル遺伝にしたがい、 “AA” は『赤』、“aa” は 『白』 であるが、 “ Aa" (ヘテロ) は赤や白とは明確に識別できる中 間色 『ピンク』 になる。 いま、この植物の 『ピンク』 の個体を自殖させて得た種子 を発芽させた 6個体を栽培している。このとき、以下の問いに答えなさい。 1) 『白』 が 1つも出ない確率はいくらか? ★P[『白』 が 1 つも出ない ] P[『白』が6個] 2)6個体中、少なくとも1個体は 『赤』 である確率はいくらか? = ★P[少なくとも1個体は『赤』] = 1-P[全てが 『赤』 ] 3) 『ピンク』が2個体以上である確率はいくらか? ★『{2個以上} = { 全体 }-{0個}-{1個}』であるから、 P[『ピンク』が2個体以上] = 4) この植物は、つぼみの時点で 『白』 か 『白でない(赤またはピンク)』 かを判別で きるものとする。 今、 ある2個体について、それらのつぼみからいずれも 『白 でない』ことが判明した。 この時点で、 6個体の全てが 『ピンク』である確率 はいくらか? ★ つぼみの時点で 『白でない』 と判明した個体が 『ピンク』 である条件確率は、 2 P[『ピンク』|『白でない』] - 1/21(11) 一号 3 1 その他の個体については、P[『ピンク』] 2 P[全てが『ピンク』 | 2個体が 『白』 でない] であるから、

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学検定3級の問題です 標本平均の標本分布とはなんですか? 解説の意味がわかりません 助けてください!

DE SAHN 問18 母平均 μ, 母分散をもつ母集団から,大きさn(≧2) の標本としてXi....,Xn を無作為抽出し,それらの標本平均X=-Xiを考える。 このとき, 標本平均の性 ni=1 質として、次の①~⑤のうちから最も適切なものを一つ選べ。 28 ① 標本平均は必ず母平均μ に近い値をとる。 ② 標本平均の標本分布の期待値は必ずμとなる。 ③ 標本平均の標本分布の分散は必ずとなる。 ④ 標本平均の標本分布は必ず正規分布になる。 標本平均の標本分布はnに依存しない。 問19 あるパン屋で製造されているあんパンの重さの平均μ (g) を調べるために, 10 個のあんパンの重さに基づき信頼度 (信頼係数) 95%の平均の信頼区間を求めるこ とにした。ただし,あんパンの重さは独立に平均 μ 標準偏差2の正規分布に従っ ていると仮定する。 このとき,次の I~ⅢIの記述を考えた。20000円 0002 I. 信頼度を95%から99% に変えると, 信頼区間の幅は狭くなる。 ため の II.重さを測るあんパンの個数を10個から50個に増やすと, 信頼区間の幅は狭 くなる。 comm Ⅲ. 見た目の小さいあんパンだけを10個集めると、必ず信頼区間の幅は狭くな る。 この記述 I~ⅢIに関して、次の①~⑤のうちから最も適切なものを一つ選べ。 29 ① Ⅰ のみ正しい ④ ⅠとⅡIのみ正しい Ⅱのみ正しい IとⅢのみ正しい ⅢIのみ正しい

回答募集中 回答数: 0