学年

教科

質問の種類

数学 大学生・専門学校生・社会人

テキストには写真の(2.13)と(2.15)より(2.15)式の右辺、左辺の定数項について求められるとしていますが、求め方が分かりません。どのように考えた場合定数項について求められるかを教えてください

}) (0) で .11) xx-th-1² tr 1 n-1 (2.12) Page bi age 171 EN (T 20 君のこと Page +1)= 172 l を上昇階乗ベキと呼ぶ。 この両者をあわせて, 階乗ベキと呼ぶことにする。 2.3 スターリング数 2.2節で学習したように、 階乗ベキは差分演算のなかで有効な計算手段 である。 ここでは,スターリング (Stirling *3) 数を利用して下降階乗ベ キュ”と単項式”の関係を学習する。 ここでnは2以上の自然数とし ておく。 実際には、下降階乗ベキを多項式で表すこと, 単項式を下降階 乗ベキの一次結合で表すことを問題意識とする。 まず、前者については x² = x² +Nn-1,nxn-1 +...+₁,nx = Σnj,n x² in (2.13) j=0 と表せる。ここで,Vn,n=1,70,n=0, さらにnjin=0,j>nであり, 7j,n は漸化式 In=zn+in-1,n n - njn+1=nj-1,n nnjin, 1≤j≤n x² (x-1) {[ (x-1) (x-2) * \\ { XL-{h+1) +2) (x −(n+1)+1) (2.14) を満たす。実際,zn+1=cℓ.(x-n) であるから、この式の両辺をライ プニッツの公式 *4 を利用して回微分すると, 積の微妙で、()は2階 (xn+¹)(i) = (x²)(i). (x − n) + j(x²)(i-1)³025 (2.15) を得る。2.13) から (215) の左辺の定数項は, j! 7jn+1 であり, (2.15) の右辺の定数項は-nj! nijn+j.(j-1)! nj-1 である。 したがって、 う! で割って比較することで, (2.14) が導かれる。 また,後者については, 第2章 差分法 | 37 n xn-¹ +...+ñ₁, x² = Σnk,n x² k=0 x. ?jn+の区間の生き残り処理する? (2.16) と表せる。 ここで, in,n=1,70,n=0, さらに ik,n=0,knであ り kn は漸化式 *3 James Stirling, 1692-1770, スコットランド, スターリングによって書かれた ものに [163] などがある。 *4 1.4.2の定理 1.4を参照のこと。 > (x^²+1) = x^² + Mn₁n₁₁ X²

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

シグマを使った数列の問題について質問です シグマの上の部分に、n-1などの時かつシグマの中身の部分の指数にk-1など、指数が文字のみではない時はどのような計算をするのですか 例えば、下線部がどのような計算をしたのかわからないです

基礎問 200 第7章 数 列 130 群数列(I) 精講 1から順に並べた自然数を, 1/2, 3/4, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 15 16, のように、第n群(n=1, 2, ...) が 27-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ (2) 第n群に含まれる数の総和を求めよ. (3) 3000は第何群の何番目にあるか. ある規則のある数列に区切りを入れて固まりを作ってできる群数列 を考えるときは, 「もとの数列ではじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します。 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて (1+2+..+27-2) 項目. すなわち, (27-1-1) 項目だからその数字は 2-1-1 よって、 第n群の最初の数は (2-1-1)+1=2-1 (2) (1)より,第2群に含まれる数は 初項2"-1 公差 1 項数2の等差数列. よって, 求める総和は 10 ・2n- 2-¹ (2-2-¹+(2-1-1). 1) 2 【各群の最後の数が基 準 【等比数列の和の公式 を用いて計算する AD =2"-2(2.2-1+2"-1-1)=2"-2(3.2"-'-1) (別解) 2行目は初項2"-1 末項2"-1. 項数2"-1の等差数列と考えて

回答募集中 回答数: 0