学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)どう計算してるんですか? 書いて欲しいです、、

次の等式を示せ。 (1) 1-tanh2x=- 1 cosh2x (2) sinh(x+y)=sinhx cosh y±coshx sinhy- 当 (3) cosh(x±y)=coshx coshy±sinhxsinhy 指針 双曲線関数の定義式 sinhx=- e-e-* 2 cosh.x=_extex tanhx=- e*-e-* (1) 関数 また、 Blim xa 2 e*+e** と、等式 coshx-sinhx=1 を利用して式変形を行う。 等式 A=B の証明の方法は,次のいずれかによる。 (2) x- これ [1] AかBの一方を変形して,他方を導く (複雑な方の式を変形)。 [2] A, B をそれぞれ変形して,同じ式を導く。 [A=C, B=C⇒A=B] [3] A-B=0 であることを示す。 [A=B⇔A-B=0] ここでは, [1] の方法で証明する。 (3) 任 あ とな x= り立 ex-e-x 解答 (1) tanhx= であるから extex 1-tanhx=1-(ex-e_x)= (e2x+e-2x+2)-(e2x+e-x-2) daia そこ ま (exte-x)2 dale deob ad (ex + e¯x)² = (ex + ex )² 2 cosh2x 2 ex-e-x (2) sinhx= coshx= 2 exte-x 2 ey-e-y ete- がはこ sinhy=- 2 coshy=2 であるから sinhx coshy ±coshx sinhy= ex-exte-y exte e-e -y ・土・ (4) ネ 2 2 4 lexty_ -e-(x±y) 2 ex-ex (3) sinhx=- (ex+x+ex-x-e-x+y—e¯¯³) ± (ex+y—ex−y + e −x+y-e¯x-y) sin(x±y) (複号同順) 2, coshx= t=e exte-x 2, sinhy= であるから cosh x coshy±sinhx sinh y=- exte¯* e³te¯ e-ex e-e- 2 2 ・土・ (ex+x+ex-y+e¯x+y+e¯*¯³) ± (e*+y—ex-y-e-x+x+e-x-3) 4 2 exty te - (x+y) 2,coshy= 2 ま (6)x で COS 更 ま sete

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

統計検定準1級2021年6月の問6です。 [1]の解説で、1行目から2行目に変形できるのはなぜでしょうか。 直感的には分からなくもないのですが計算過程が知りたいです。

問6 2つのグループからのデータを判別する代表的な方法に,フィッシャーの線形判 別がある。 グループ 1, グループ2の2つのグループから2次元データを収集し たものとする。それぞれの標本サイズを ni, 72 とし, データを { 1,T2,...,Zn,}, ny 1. {¥1,92,.., Yng} とおく。 また, それぞれのグループの平均ベクトルを=- n1 8 y=- 722 1 n 72 i=1 722 i=1 とおく。 ただし,n=n+n2 である。 Yi とおく。 さらに, データ全体を {Z1,Z2,..., Zn}, 平均ベクトルをえ= とおき,さらに 〔1〕 各グループの分散共分散行列 S1, S2 とデータ全体の分散共分散行列 S をそれ ぞれ S1 = S2= n1 1 n1 n2 i=1 722 i=1 n (x₁ - x)(x₁ - x) ¹ i=1 (Yi — Y) (Yi – ÿ) - S= 1/2 (2₁-2) (2₁ - 2) T i=1 Sw=115₁ +25₂ n n n2 n1 - SB = 1/¹² ( x − z ) ( x − z ) ¹ + 2/2² (ÿ – z) (ÿ – z)™ n n Dis ① つねにS> Sw+SB が成り立つ。 ② つねにS=Sw + SB が成り立つ。 ③ つねに S < Sw + SB が成り立つ。 ④ 上記に正しいものは一つもない。 と定義する。ここで「は転置を表すとする。 3つの行列 S, Sw, SB の関係につい て、次の①~④のうちから最も適切なものを一つ選べ。 ただし, P > Q は行列 P-Q の固有値がすべて正であることを意味する。 10

解決済み 回答数: 1