学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)で、なぜ9+3になるのかが分かりません。教えてくださいよろしくお願いします

●7 重複組合せ A,B,C,D の4種類の缶詰を合わせて9個買うとき, (1) それぞれの缶詰を少なくとも1個は買う場合,買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか. 種類ごとにまとめて並べる ← (産業能率大) 理するとしたら、多くの人が「左から A,B,C,D の順に、同じ種類の缶詰をまとめて並べる」とする 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 のではないか.例えば,Aを3個, Bを4個 Cを1個,Dを1個ならAAABBBBCDとなる.そして, この文字列は, AとBの境,BとCの境, C とDの境が決まれば決まる (復元できる). 000100001010 つまり右のように A~Dを〇境を仕切りで表せば,9個の○と3個のの並びと対応する. (1)は,仕切りが両端にはなく,かつ隣り合わない。 (2) は並び順は自由である.このような○と の並べ方の総数を求める. 解答圜 (1) ○を9個並べておき,○の間 (図の1)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順に A, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 AAABBBBCD ↑↑↑ |0|000 A B C D 8・7・6 3.2 =56(通り) の数は仕切りの位置の選び方と同じで, 8C3= (2) ○を9個, を3個, 横一列に自由に並べ、 個数 (○がないところは0個) を左から順に A, B, C, D の個数とする. この並べ方と題意の買い方は 対応するから,求める場合の数は, 9+3C3= 9+3つ で区切られた4か所の○の 000||000000 A B C D 12-11-10 =220 (通り) 3・2 ■(2)で,各缶詰を1個ずつ余分に買うとすると, 合わせて13個, 各1個以上な ので (1) と同様にできる (式も 12C3となる). 逆に (1) を各缶詰を1個ずつ減ら して(2)のように解いてもよい。 □Aをx個, Bをy個, Cを2個, Dをw個買うとすると, x+y+z+w=9で, (1)はxwが1以上, (2) は x~w が0以上である. このような~w の組の 個数を求めたことになる. p.25のミニ講座も参照. 買い方を決めれば仕切りの位置 が決まる。仕切りの位置が違え ば違う買い方と対応する。 07 演習題(解答は p.21) 2008 は,各位の数字の和が10になる4桁の自然数である。 (実際に2008 の各位の数字 の和は2+0+0+8=10である.) このように, 各位の数字の和が10になる4桁の自然数 は全部で 個ある. x+y+z+w=10だが

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

極方程式についてです。 点Pが右側にあるときにrがマイナスになっています。これは2枚目の写真のような考え方をしているのかと思いますが、そのときの図と赤枠の図が一致していないように思い、納得できません。 どなたかご説明お願いします🤲

148 基本 例題 84 2次曲線の極方程式 を l とする。点Pからlに下ろした垂線をPH とするとき,e= な点Pの軌跡の極方程式を求めよ。 ただし, 極を0とする。 OP a,eを正の定数,点A の極座標を (α, 0) とし, Aを通り始線 OX に垂直な直線 であるよう PH 基本 81,83 指針▷点Pの極座標を (10) とする。 点Pが直線lの右側にある場合と左側にある場合に分け て図をかき, 長さ PH を 1, 0, αで表す。 そして, OP=ePH を利用してr= 0 の式)を 導くが,<0を考慮すると各場合の結果の式をまとめられる。 vl P(r,0) H A(a, 0) 解答 ℓ 点Pの極座標を (r, e) とする。 点Pが直線lの左側にあるとき PH=a-rcose (*) 点Pが直線lの右側にあるとき P(r, 0) L H OP=ePH から PH=rcos0-a よって r(1±ecos0)=±ea (複号同順) 1±ecos0≠0 であるから r=±e(a-rcos 0 ) A(a, 0) X ea r= ①または tea≠ 0 から r (1±ecos0)≠0 π 1+ecos 0 ea -r= 1-ecos 0 注意14/02/23のとき、 図は次のようになるが,(*) は成り立つ。 ea e ②から -r= ②' 1+ecos (+) P(r, 0) H 点(r, 0) と点(-r, 0+π) は同じ点を表すから, ①と②は 同値である。 よって, 点Pの軌跡の極方程式は r= ea 1+ecos 0 -a- X -rcose 検討 2次曲線と離心率 1. 上の例題の点Pの軌跡は, p.122 基本事項から、焦点 0, 準線ℓ,離心率eの2次曲線を表し, 0 <e<1のとき楕円, e=1のとき放物線, 1 <eのとき双曲線 である。このように, 曲線の種類に関係なく1つの方程式で表されることが利点である。 2.例題で,点A の極座標を (a, π) [準線 l が焦点の左側] とすると,上と同様にして、点P

解決済み 回答数: 1