学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

この問題の解説にある、 AはBの出発15分前に出発し、BはCの出発7分後に出発したことから、AはCの出発8分前に出発したことがわかる。 この文章なんですけど、どういう風に考えたらAはCの出発8分前に出発したことが分かるんですか? どれだけ解説を読んでも、頭がこんがら... 続きを読む

SECTI 第1章 ●ECTION 数的推理 11 0 速さ 実践問題 74 基本レベル 頻出度 地上★★★ 国家一般職★ 国税・財務・労基★ 国家総合職 ★★ 東京都 ★ 特別区★★★ 国家総合職(教養区分)★ 裁判所職員★★ 問 A, B, Cの3人が同じ場所から同じ道を通って同じ目的地へ徒歩で向かった。 Aは, Bの出発15分前に出発し, Cの到着4分後に到着した。Bは、Cの出発 7分後に出発し, Aの到着11分後に到着した。 A, B, Cはそれぞれ一定の速 さで移動し,Bは分速60m,Cは分速70mだったとすると、Aの速さは か。 1: 分速48m 2:分速50m 3: 分速52m 4: 分速54m 5: 分速56m (国家一般職2024) とこは初めてずれった。 それぞれ1回返した後、甲と乙が再び 通ってから63秒であった。 いのはどれか。 図(地上2010) 実践 ◆問題74 の解説 PUT チェック 1回目 2回目3回目 <速さ > AはBの出発15分前に出発し, BはCの出発 7分後に出発したことから,AはC の出発 8分前に出発したことがわかる。また, BはAの到着11分後に到着したこと およびAはCの到着4分後に到着したことから,Aが移動に要した時間をα (分) と すると、中 Bの所要時間: α-15+11=α - 4 ( 分) Cの所要時間: α- 8-4 α-12 (分) 30 第1章 数的推理 ここで,同じ距離を移動する場合, 所要時間の比は速さの逆比に一致することか ら,BとCの所要時間と速さに着目して,次の式を得る。 (a-4): (a-12) = 7:6 としく、さらにこのα=60(分) 次に,Aの速さをx (m/分) として, AとBの所要時間と速さに着目すると、 a: (a-4)=60: x 60:56=60x CHROMA PASOS を満たす。 x=56(m/分) となり,Aの速さは分速56mであることがわかる。 よって, 正解は肢5である。 となりを代入 ()+()=x+x 40x-400 (e/m)= たすため、 よって、正解は 10(分)と 2である。 (コメント) 本間でわれているの 8:1 01:S

未解決 回答数: 2
公務員試験 大学生・専門学校生・社会人

この練習問題分かる方教えてください。

210 空間関係検査問題注意事項 1. この問題は,2種類の検査から成っており, それぞれが交互に5題ずつ計45題 (No. 16~ No. 60) 出題されます。 2. 検査の説明及び練習問題が3~6ページにあり, 本検査問題は7~11ページにあります。 3. 解答時間は正味 25分間です。 4. 問題番号と答案用紙の番号とがずれないように注意しながら、 できるだけ多く解答してくだ さい。 なお,誤答や解答を飛ばしたものについて, 正解数から減点されることはありません。 <例題》 接着面 前 ************************************ 検査の説明 A 1 A 底 B 右 1 2 B 3 4 5 検査I について, やり方を説明します。 AとBは立方体の展開図で,Aの底面(「底」と書いてある面)とBの一つの面を除く各面には模様 が描かれ, それが裏から透けて見えるようになっています。 この検査は,これら二つの展開図を 現在見えている模様が立方体の内側にくるように, 各線を谷折りにして立方体を組み立て, 出来上 がった二つの立方体AとBを, 接着面として指定された面の模様どうしがぴったりと重なるように 接着し,「底」と書いてある面を常に底面として,指定された向きから見えるAの立方体の面が, 指 定された模様になるように,この接着された立体全体を回転させたとき, 指定された向きから見え るBの立方体の表面の模様がどれであるかを判断するものです。 ただし,立方体をある一つの面側から見たとき, その面に相対する面の模様までは透けては見え ないものとします。 なお,接着に当たっては、Aの立方体は動かさず,Bの立方体の方を自由に動 かして、Aの立方体の接着面として指定された模様の面に合わせることとします。また,Aの指定 された面の模様の向きは,実際に立方体を組み立て, 動かしたものとは必ずしも一致しないことが あります。 《例題》では,「 りと重なる向きに接着し(図2), 「 が「前」になるように, A の を向かって「右」方向から見るというものです (図3)。このとき、模様は 「となります。 【練習 1 】 接着面 」は、組み立てた二つの立方体(図1)の 【練習 2】 図 1 【練習 3】 B 接着面 ✓の面どうしを模様がぴった □」は,「底」と書いてある面を底面としてAの立方体 接着された立体全体を回転させたとき、「 B 」は、Bの立方体 右 LOVE 接着面 B A 図2 A 接着面 解き方が分かったら, 練習問題を解いてみてください。 正答はこのページの下方にあります。 《 練習問題 》 A B 接着面 左→ 2 となりますから、 答 3 図3 4 正答 ・右 次のページを開き、検査ⅡIの説明に進んでください。 【練習 1 】 【練習 2】 【練習3】 2016年実施航空管制官採用試験第1次試験 適性 5 3 2 211

未解決 回答数: 1
1/2