学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

数的処理の資料解釈の問題です。 写真1枚目が問題、2枚目が解答の、選択肢4についての部分です。 この選択肢4の解答の初めに、「市場総額の対前年増加率がいずれの年も正であるから、その他の額の構成費が前年よりも増加している年をみる」と書いてあるのですが、なぜそうなるのか分かりません。

【No. 24】 図1はある国の、バイオテクノロジー市場総額の対前年増加率の推移、図IIはバイオテクノロ ジー市場総額の構成比の推移を示したものである。 これらの図からいえることとして、 確実なのは次のう ちどれか。 (%) 15 13.0 10 10 対前年増加率 0 04 (%) 100 4.6 2005 8.0 7.3 2006 2007 2008 (年) 図 I 88 80 28. 42 € 24.8 25.3 その他 43. 32 60 40 構成比 _6.9 13.9 60 17.0 農林水産品 4.1 : 24.6 22.5 20.9 40 化成品 30.9 20 20 40.1 38.8 36.8 医薬品 21.7 0 2005 2006 2007 2008 (年) 図Ⅱ 1. 農林水産品についてみると、 2005年の額の指数を100としたとき、2008年の額の指数は500を上回っ ている。 2.2005年から2008年までの化成品の額についてみると、最も小さいのは2008年であり、次に小さいの は2005年である。 3.2007年と2008年の医薬品の額についてみると、 どちらの年も前年の額を下回っている。 4.2006年から2008年までのその他の額の対前年増加率についてみると、いずれの年もバイオテクノロジ 一市場総額の対前年増加率を下回っている。 5.2007年に対する 2008年の増加額について品目別にみると、大きい順に農林水産品、その他、 化成品、 医薬品である。

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

写真2枚目の下の方 波線部分について なぜおもりの比が1:3になるのですか?? なぜか畑中は天秤の式を勧めていますが、もしかして水溶液の問題は方程式の方が効率いいですか??

X Exercise No.39 容器Aには3%の食塩水1000g が、 容器Bには9%の食塩水3000gが入っ ている。いま、それぞれの容器から食塩水をくみ出して交換したところ、A, Bの濃度は等しくなった。A,Bからくみ出した食塩水の比は1:2であった とすると、等しくなったときの濃度と、Aからくみ出した食塩水の量は、それ ぞれいくらか。 市役所 1999 濃度 食塩水の量 6% 450g 6% 600g 3.7.5% 450g 4.7.5% 550g 5.7.5% 600g 1. 2. X No.40 ある塩の水溶液A,Bは、濃度が互いに異なり、 それぞれが 1,200gずつ ある。 両方を別々の瓶に入れて保管していたところ、水溶液Aが入った瓶の蓋 が緩んでいたため、水溶液Aの水分の一部が蒸発した結果、 100gの塩が沈殿 した。 この沈殿物を取り除くと、 水溶液の重量は800g となったが、これに水溶液 Bのうちの400gを加えたところ、この水溶液の濃度は水溶液Aの当初の濃度 と同じになった。 次に、水溶液A から取り出した沈殿物 100g に 水溶液B のうちの500gを加 えて溶かしたところ、この水溶液の濃度も水溶液Aの当初の濃度と同じになった。 水溶液Aの当初の濃度はいくらか。 なお、沈殿物を取り除く際には、水分は取り除かれないものとする。 1.22.5% 2.27.5% 3.32.5% 4.37.5% 5.42.5% 国家一般職 2013

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

なぜこの問題の選択肢4と5は確実にいると言えないのでしょうか?

基本例題2 24 ある会社で野球、サッカー、バスケットボール、テニスについて、 「好き」 と 「嫌い」の二者択 回答するアンケートを実施した。 次のア~ウのことがわかっているとき、 確実にいえることとして、 も妥当なのはどれか。 (2016年度 東京消防庁) ア 野球が好きな人はサッカーが好きである。 イ 野球が好きでテニスが嫌いな人がいる。 ウバスケットボールが好きな人はテニスも好きである。 メメメメメメ サッカーを好きな人の人数が最も多い。 2. サッカーが好きな人の中にはバスケットボールが嫌いな人もいる。 メメメメメメ サッカーが好きな人は、野球かテニスが好きである。 野球が好きな人の中にはバスケットボールが好きな人もいる。 バスケットボールが好きな人の中にはサッカーが好きな人もいる。 問題のポイント 「○○が好きで△△が嫌いな人がいる。」という条件が1つ入っているため、論理式では表せません。野球、 サッカー、バスケットボール、テニスの4項目について「好き」=○、「嫌い」=xの全てのパターンを一 覧表にします。 C 解説 STEP1 真偽表を作成する(表1) 野球、サッカー、バスケットボール、テニスの4項目でそれぞれ 「好き=O」 と 「嫌 い=x」の2通りあるので、全部で24=16通りの組合せがあります。 STEP2 「いる可能性がない部分」 を消去する(表2) ア…・・ 「野球が好きな人全員がサッカーが好き」 なので野球が好きなのにサッカーが嫌い な人、 すなわち5、6、7、8を消去します。 ウ・・・「バスケットボールが好きな人全員がテニスが好き」なのでバスケットボールが 好きなのにテニスが嫌いな人、2、10、14を消去します ( 6 はアで消去済)。 STEP3 「確実にいる部分」 「いる可能性がある部分」をはっきりさせる イ・・・野球が好きでテニスが嫌いな人、すなわち4は確実にいるので番号に○をつけます。 それ以外の1、3、9、11、12、13、15、16(色を塗っていない箇所)は、いる 可能性があります。 1 O 2 30 74 野サ O O O 4 5 6 7 O 表1 パテ olo × 10 x 11 x O OxO 12 x x O 13 x O 14 15 16 O x x 80 x x 野 x × サ O O Mzamb × O O x0 x O X Ex C O X ④4 野 サ O O O O x 表2 O 11 x 12 00 13 XX O x 9 xXxx O × x x × サ O x 16 バ O O O O x X O O xx x x × O O x x x これを元に選択肢を検討しましょう。 1. サッカーを好きな人の人数が最も多い可能性はありますがそれぞれの人数が不明 なので確実にはいえません。 2. 「サッカーが好きでバスケットボールが嫌いな人」は4にいますね。よって確実に いえます。 3. 「サッカーが好きな人は全て野球かテニスの少なくとも一方が好きか」確認します。 すると、12は、「サッカーが好きだけど、野球もテニスも嫌い」が該当し、ここに もいる可能性はあります。 よって確実にはいえません。 4.「野球もバスケットボールも好きな人」は1が該当し、いる可能性がありますが確実 にはいえません。 5. 「バスケットボールもサッカーも好きな人」は1と9が該当し、いる可能性はあり ますが確実にはいえません。 正解 2 chapter 2 論理命題 2 1

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

この問題の解答のA+B=C+Bが(1)のところでは14になっていて(2)の所では13でした。 何故こうなるのか分かりません。 Dが持ってる本数が10本に決まると解答に書いてあります。 なぜ10本になるのか分かりません。 教えてください。

[No.202] 正答 5 2034aで割ったときの共通の余り とする。このとき、 20 = am+y① 34an+y ② と表すことができる (mは20を4で割った では34で割った商)。 ②から①を 辺々引くと. €761 14 = a(n-m)!! となる。これはα (およびヵ-m) が14の約 数であることを意味する。 よっては1. 2. 7. 14 のいずれか。 ただし, 20 がαで割 り切れてはいけない ( 0 だと 「26をで 割った余りがそれ(r) より小さい」ことに反す る)ので,αとして考えられるのは7か14 α=7のとき: 20を7で割ると余りはy=6。 一方26を 7で割ると余りは5で、これはより小さ いのでOK。 14 のとき: 2014で割ると余り=6。 一方26を 14 で割ると余りは12で、 これはより大 きいので不適。 よって求める余りは5である。 【No.203】 正答 5 A~Eが持つ本数をそれぞれA~E (本) とする。 A~Eは順不同で2, 4, 6, 8, 10に対応 する。 いまCはEの2倍なので [E=2, C=4] 「E=4,C=8」 のいずれかである。 (1) E=2.C=4のとき: [ms.601 仮定よりE以外の4つの数はA+B= C+D を満たすが、 E以外の4つの数の 合計は4+6+8+10=28なので、 A+B=C +D=14 となり、これより D-10 となる。 (さら A. Bは順不同で68) (2) E=4,C=8のとき (1)と同様に考えると、E以外の4つの 数の合計は2+6 +8+10=26なので。 A+B=C +D=13 " 8 になるが、これではDが5になるので 不適。 よってDが持っている本数は10本に決 まる。 【No.204】 正答 1 ax bxc = 180 .... ① は3の倍数なのでa=3k とおける o は整数) bとcの最大公約数が2なので b=2B.c=2C (BとCは互いに素) とおける。これらを①に代入すると. (3k) ×2B×2C=180 ∴. k×B×C=15...... ② となる。 これよりk. B. C は 15の約数で あり、 よって 1. 3. 5. 15 のいずれか。 α(=3k) とb(=2B) の最小公倍数が18 (23) なのでもBも5の倍数ではな く.またkとBの少なくとも一方は3の倍 数である。 これに注意して ② をみると、② 68- 1×3×5 または 3×1 ×5 のどちらかになる。前者だと k=1. B=3 よりα=3.6=6となり、これらの最小公倍 数は6になるので不適。後者ならk=3. B =1よりa=9.6=2になり、確かに最小公 倍数は18である。 以上により a=3-3=9 b=2-1=2 c=2-5=10 に決まり、これらの和は9+2+10-21で

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

公務員試験の問題です。わかる方解答、説明お願いし

【問題 11 しかし小説家が真理を描くに当たっては、真実性がなければならない。小説家は事実を描くのでは なくして、真実を描くのである。芸術上の真実(Riality)とは自然の事実に対立する言葉で、真実はむしろ真理に 属し、事実現実(Actuality)を包括するものなのである。我々が経験する世界が現実であり、我々が直惑する世 界が真実であるといnよう。小説を「現実識の一形態と見る見地からすれば、その真実真理としての秀れた意 義をもち」うると言っても差し支へないであらう。兎に角、小説家真理より多く語るために事実を放棄し、真実 を示すために現実を離れる事も必要となるのである。したがってモウパッサンのいふやうに、小説家の意向が「不 意にしてそして日常はれている成る事実の哲理を表現することにある以上、真実らしさのために真実を害しても、 なほしばしば事実を訂正しなければならめぬなぜなら、真実時とすると真実らしく見えない事があるからである」 また「作品における写実は、事実の普通の論理に従って、真実の完全改影を与えることで成り立ってみて、事実 が次々に起るがままに、これを一々滅紫苦案ご写し取ることでは成り立ってみない」といひ、ゲェテも芸術上の真 を語って、「真正の芸術家は芸術上の真を得んと務める。盲目な衝動に従う無な芸術家は自然の現実性を得ん と務める。彼によって芸術は最上の頂きに上げられ、これによって芸術提低の段階に引き下ろされる」と言って みるのは味はべき言葉であると思ふ 上文でいう小説家のありうべき姿として愛当なものはどれか 小説家真実を尊みばならぬが、現実を認識することはない。 2 小説家の努力は、日常の事実から真理を発掘することにある。 1 3 小説家の相婚する真理とは、現実を包括するものである。 4 小説刻独自の世界観をもたなければならめが、芸術上のレアリティは必要ではない。 5 小説索真実が、真理としての優れた意義をもちうるためにも、日常の現象をより多く取り入れるよ うに努めることである。 問題 21 A~Eの5人が同じ日に仕事を始めたが、仕事を終えた日はまちまちで、次のことがわかっている。 このとき、仕事を早く終えた者から順に並べたものは、右の1~5のどれか ア Bが終えた日とCが終えた日は3日違いだった。 イ CはAより6日はやく終えた。 ウ DはAより2日はやく終えた。 エ Dが終えた日とEが終えた日は5日違いだった。 オ Bが終えた日とEが終えた日は6日違いだった。 1. B-D-C-A-E 2. B-E-C-D-A 3. C-B-D-A-E 4. C-D-B-E-A 5. E-C-B-D-A

回答募集中 回答数: 0
1/2