学年

教科

質問の種類

物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1
物理 高校生

どうして電池の仕事がコンデンサーのだけになるんですか? 抵抗にも仕事しないんですか?? 教えて欲しいです🙇‍♀️

必解 107. <スイッチの切りかえによる電荷の移動〉 R R[Ω] 図のように,電圧 V [V], 2V [V] の電池 E1, E2, 電 S1/S2 気容量がいずれもC[F]のコンデンサー C1, C2,抵抗値 R[Ω] の抵抗 R, スイッチ S1, S2 が接続されている。最 初, スイッチ S, S2 は開いていて, C1, C2 には電荷は蓄 えられていないものとする。 また, 電池の内部抵抗は無 視できるものとする。 次の問いに答えよ。 (1) S を閉じてから十分に時間が経過した。この間に電池 E がした仕事を求めよ。 の C2. C[F] C1 C[F] T E1 VVX E2 Vo [V] 2V (V) (2)次に,S1 を開き S2 を閉じた。十分に時間が経過した後のC2 の両端の電位差を求めよ。 また,この間に電池 E2 がした仕事を求めよ。 [し] VOX (3) 続いて, S2 を開き, S1 を閉じた。 十分に時間が経過した後, S を開き S2 を閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4)この後,(3)の操作をくり返すと, C2 の両端の電位差はある有限な値に近づく。 その値を 求めよ。 コンデンサー [17 大阪市大〕 必解 108. <極板間の電場と電位〉 真空中で図1のように, 2枚の薄い金属板 A, B を間隔d 〔m〕 は なして配置した平行平板コンデンサーの両端に起電力 V [V] の電 池とスイッチSがつないである。 dは金属板の大きさに対して十分 A IB

解決済み 回答数: 1
物理 高校生

qEによって上に+が移動するから右にqvyBの力が働くならどうして最後下に働いた力によって左に力が働かないんですか?

電場や磁場の影音 電気量g(g0) の荷電粒子が時刻 t = 0 に原点0から初速度 = (u, 0)(o> 0) 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, で運動を開始した。 時刻 t でのこの粒子の位置は である。 = い (あ、 (x,y) ) 図2のように,x 平面に垂直に、紙面の裏から表に向かって,磁束密度B の一様な磁 場がかかっているとする。質量m, 電気量 q(q > 0)の荷電粒子が時刻 t = 0 に原点 0から初速度v=(-v0) (0)で運動を開始した。 この粒子が運動開始後に最 初に軸を通過するときの時刻はt= で、そのときの座標は う (x,y)=(0, 小巻 である。 平 初めてとなる時に初に置かれ 図3のように, y 軸方向正の向きに強さ E の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって,磁束密度B の一様な磁場の両方がかかっているとする。 質量m,電 気量 g(g> 0)の荷電粒子が時刻 t = 0 に原点0から初速度。 = (0,0)で運動を 開始した。この粒子のX軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ ax, ay とすると,運動方程式は TE ひ v x 図1 図2 → x この衝突が起きるには、エネ <号を満たす特別な値となる y B 図3 x

解決済み 回答数: 1
物理 高校生

この問題の(4)で(ΔB/B)^2の項は無視してるのにΔB/Bの項は無視していないのはなぜですか?

133. <ベータトロン〉 時間変化する磁場による荷電粒子の加速について考えよう。 図のように、原点Oを通り互いに直交するx軸, y 軸, z軸をと る。 AB (1) 等速円運動する荷電粒子の速さを求めよ。 2軸の正の向きに一様で時間変化しない磁場が加えられてお り,その磁束密度の大きさをBとする。この磁場中に質量 m, 電荷 g (>0) の荷電粒子を入射したところ,xy 平面上で原点O を中心とする半径rの等速円運動をした。 y m x v 荷電粒子の円運動は,半径rの円形コイルを流れる電流とみなすことができ,円形コイル を貫く磁束はBで与えられる。このことを用いて, 磁場を時間変化させたときの荷電粒 子の運動について考える。ただし,この電流がつくる磁場は無視できるとする。円形コイル 内部と円形コイル上の磁束密度の大きさを時間とともに一様に増加させる。増加を開始して から微小時間 ⊿t 経過したとき,磁束密度の大きさは微小量⊿B (>0) だけ増加した。 なお、 (4)(5)では2つ以上の微小量どうしの積は無視して計算すること。 (2) 円形コイルに誘導される電場の大きさを求めよ。 闘 (3) 誘導された電場により荷電粒子の速さは増加する。 その理由を述べ, 速さの微小な増加 量⊿v を求めよ。 *(4)磁場の増加により円運動の半径は変わらないと仮定して,荷電粒子にはたらくローレン ッカの大きさと遠心力の大きさを計算し,ローレンツ力は遠心力より大きいことを示せ。 したがって,磁束密度を一様に増加させると軌道が円からずれる。 元の円軌道を保つには, 磁束密度の増加量を一様ではなくすればよい。 このとき,円形コイル内部の磁束密度の大き さの平均値をĒとすると,円形コイルを貫く磁束は2万で与えられる。微小時間⊿t経過 する間に, Bを微小量 4B 増加させ, 円形コイル上の磁束密度の大きさを⊿B'増加させたと ころ,もとの円軌道が保たれた。だだし、磁束密度の大きさはz軸からの距離と時間だけに 依存するものとする。 (8) AB4B' の比 AB AB' を求めよ。 〔22 大阪公立大〕

解決済み 回答数: 1
物理 高校生

【コンデンサーの繋ぎ変え問題】 操作1の時にC1の左側にマイナスが溜まるのはわかるのですが操作2で写真二枚目のように繋いだ時に左側にマイナスが溜まるのかわかりません。電池の正極についているので時間が経てばプラスの電荷が貯まりませんか?

問題 93 電気量保存の法則 ② 次の文中の空欄にあてはまる式を記せ。 図のように、電圧V 〔V〕の電池 E1 と E2, 電 物理 C1 C2 S2 S b1 気容量 C(F)のコンデンサー と C2, および スイッチS1とS2を接続する。 はじめ, スイ ッチは開いた状態であり, コンデンサーは電 荷を蓄えていないものとして,次の操作 I か らⅢを順に行う。 L b2 Ja E1- -E2 操作 I スイッチS1 を a1, スイッチ S2を2に順に接続した。 コンデンサー Cの右側の極板に蓄えられる電荷は,Q=(I) 〔C〕 である。 操作 Ⅱ スイッチS を b, スイッチS2をb2に順に接続した。 このとき, コ ンデンサー C1の右側の極板および, C2 の左側の極板に蓄えられている電 荷をそれぞれQ1 Q2 とすると, Q=Q1+Q2 である。 一方, キルヒホッ フの第二法則より,VをQ1 Q2, Cで表すと, V = (2) (V) である。 Q1, Q2 を C, Vを用いて表すと, Q1= (3) 〔C), Q2 = (4) 〔C) である。 操作Ⅲ スイッチSをa,スイッチS2をa2に順に接続したあと,スイッチ S1をb1, スイッチS2をb2に順に接続した。 コンデンサー C1の右側の極板 に蓄えられている電荷をC,Vを用いて表すと, (5) 〔C) であり,コン NO デンサーC2の左側の極板に蓄えられている電荷を C, Vを用いて表すと, (6) 〔C)である。 愛媛大〉

解決済み 回答数: 1
物理 高校生

4番について質問したいです。 これの答えがイになる理由がわかりません。鉛直方向で考えると,自由落下の運動と同じになるのではないかと思ったからです。解説の書いてあることもあまりピンときてません。 どこから考え方が違うのか,どう違うのかを教えて欲しいです。

よって 36 ゆえに '=6.0rad/s 基本例題 12 慣性力 •53,54,55,56 解説動画 一定の大きさの加速度αで進行中の電車の天井から 質量mのおもりを糸でつるした。 電車内の人には,糸 が鉛直方向から角度0傾いて静止しているように見え た。重力加速度の大きさをgとする。 (1) 電車の加速度の向きは右向きか左向きのどちらか。 (2) tan の値を求めよ。 (3) 糸がおもりを引く力の大きさSをm,g, a を用いて表せ。 ア 人 (4) 突然糸が切れた。 電車内の人から見ると, おもりの軌道はア〜ウのいずれか。 指針 電車に乗った観測者から見ると, おもりには慣性力がはたらいているように見える。その 向きは,電車の加速度の向きと反対である。 解答 (1) 糸の傾きより慣 糸が引く力 性力の向きは右 Scos e 向きである。 よ って,加速度の 向きは左向き。 (2) 電車内の人から 見ると, 重力, SA 0: 慣性力 水平方向: Ssino-ma=0 鉛直方向: Scos0-mg=0 ①,②式より tan0 ・① sin a coso g ma Ssine 重力 mg 糸が引く力, 慣性力の3力がつりあ っているように見える。 力のつりあ いより (3) 糸が引く力の大きさは三平方の定理より S=√(mg)2+(ma)2=m√g2+a (4) 電車内の人から見ると, おもりは重力と 慣性力を受けて運動するように見える。 したがって, それらの合力の向きに, 等加 速度直線運動を行う。 よってイ

解決済み 回答数: 2
物理 高校生

(3)がわからないです。なぜ(ア)が答えになるのでしょうか...?(1)の誘導がない場合でも導けるように考え方を教えて頂きたいです。よろしくお願い致します。

B (思考 図1に示すように直交座標系を設定する。 初速度の無視できる電荷g (g>0),質量m の陽子が,y軸上で小さな穴のある電極 a の位置から電極 a b 間の電圧Vでy軸の 正の向きに加速され, z軸に垂直でy軸方 向の長さがしの平板電極c, d (z=±ん) か らなる偏向部に入る。 c, d間にはz軸の 124. 〈電磁場中の荷電粒子の運動〉 x 偏向部 h y E 変位 d 図 1 正の向きに強さEの一様な電場 (電界)が加えられている。これらの装置は真空中にある。 電場は平板電極 c,dにはさまれた領域の外にはもれ出ておらず,ふちの近くでも電極に垂 直であるとし、地磁気および重力の影響は無視できるとする。 〔A〕 電極bの穴を通過した瞬間の陽子の速さvo を,V,g, m を用いて表せ。 〔B〕 その後,陽子は直進し,速さのままで偏向部に入る。 (1)陽子が電極 cに衝突することなく偏向部を出る場合,その瞬間のz 座標 (変位) 21 を Vo,g, m, l,Eを用いて表せ。 (2)Eがある値Eより大きければ陽子は電極cに衝突し,小さければ衝突しない。その値 E を, V, l, んを用いて表せ。 〔C〕 陽子のかわりにα 粒子 (電荷 2g, 質量 4m) を用いて同じV,Eの値で実験を行った ところ,偏向部を出る瞬間の座標 (変位) は 22 であった。 Z2を, 21 を用いて表せ。 [D] E の値をE1 に固定し, 電極 c d にはさまれた領域にx軸の正の向きに磁束密度B (B>0) の一様な磁場 (磁界) を加え, 再び陽子を用いて実験した。 (1) Bをある値 B1 にしたところ,陽子は偏向部を直進し, 偏向部を通過するのに時間 T を要した。 B1 と T1 を, Vo, E1, lを用いてそれぞれ表せ。 (2) Bをある値 B2 (0 <Bz <Bi) にしたところ, 陽子が偏向部を出る直前の座標 (変位) は Z3 (230) であった。このときの陽子の速さを,g,m, V, E1, 23 を用いて表せ。 *(3) Bを 0<B<B, の範囲内で変化させて実験をくり返し, 陽子が偏向部を通過するのに 要する時間を測定した。 このとき, BとTの関係を表すグラフはどのようになるか。 図2の(ア)~(オ)の中から最も適当なものを1つ選べ。 T4 TA (ア) T₁ T4 TA TA (イ) (ウ) (エ) (オ) T1 T1 T1 T₁ 10 B₁ B 0 B₁ B B₁ B 0 B₁ B 0 B₁ B 図2 [東京大〕

解決済み 回答数: 1
1/4