学年

教科

質問の種類

数学 高校生

この問題の四角で囲んだ箇所の計算が分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

1 等差数列と等比数列 (39) Think 例題 B1.16 等比数列と図形 **** ¥ Ai(1,α)/l 直線 y=ax (a>0) を l とする.ℓ上の点 A (1, α) からx軸に垂線を下ろし、その足B, からに垂線を下ろし, その足を A2 とする. さらに点Aからx軸に垂線を下ろし、その足 を B2 とする. 以下これを続けて, 線分 A3 B3, A,B, ・・・・・・ を作る. また線分ABの長さを l とおく. (1) l1, l2, l3, ・・は等比数列であることを示せ. Az A3 O (2) li+ l2+ ls+ ...... + ln を a で表せ. (明治学院大改) 「考え方」 解答 y=ax と x軸のなす角を0とおくと, △AOBABABA2B2 A2B2A3co・・・・・・ より 0=∠AOB=∠ABA2=∠B1A2B2=∠A2B2A=...... (1)∠AOB= 0 とおくと, lAa より cost=- OB_ 1 OA₁ √a²+1 △ABA2△A,OB より, ∠ABA2= ∠AOB=0 したがって, A2B=AB cost=licoso 同様に, l2=A2B2=A2BICOSA B3 B2 L B₁ x A (1, α) より OB= AB=αであるから, OA₁ = √√a²+12 △ABA2とAOB ∠BA1 A2=∠OAB ( ∠AAB=∠ABO △ABIAA OB1 よって, ∠ABA2=∠AOB AAOBAA₁B₁A △BA2B2 の相似」 1 1.T =licoso.cost=licos'0= a²+1 なので, 1 同様にして, ln+1= -lm が得られる. '+1 よって, l1, l2, ls, ...... は, 初項 α. 公比 の等比数列である. +1 (2)0 より, 1 a²+1 a²+1 li+lz+ls+... + ln a{1-(a²+1)}_a{1-(a²+1)"} a°+1 (a+1)"-1_ (ω°+1)"-1 キ1 なので、 A2B2 を A B で表す できる. 1 初項 α,公比- a²+1 数列の第n項までの a a²+1 100% a a(a+1)-1 (a²+1)" dear Focus 図形のくり返し相似条件に着目し、隣接項の関係式を導 練習 直線 y=ax (a>0) をℓとする. l 上の点A(2, 2a) からy軸に垂線を 1.16 その足 B, からℓに垂線を下ろし、その足をAとするさらに点Aから *** 垂線を下ろし、 その足をB2 とする. 以下これを続けて, 線分A3B3, Al * a

解決済み 回答数: 1
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
1/5