学年

教科

質問の種類

数学 高校生

写真の問題の赤線部についてですが、なぜn≧1と書く必要があるのでしょうか? その上の行でΣとCをすでに使っていますが、ΣとCのnの部分は定義から、n≧1だから、赤線部の前にn≧1という条件はすでに考慮してるのではないのでしょうか?解説おねがいします。

基礎問 P 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して,2"> n を示せ. AOAO k-1 (2) 数列の和 S. = 2 (1) anで表せ△〇〇〇 k=1 (3) lim Sm を求めよ. △△△△ n→∞ |精講 (1) 考え方は2つあります。 I. (整数)” を整式につなげたいとき, 2項定理を考えます. PROCE (数学ⅡI・B4 ⅡI. 自然数に関する命題の証明は帰納法 (数学ⅡI・B 136 Fet (2) Σ計算では重要なタイプです. (数学ⅡB 120 S=Σ(kの1次式) k+c (r≠1) は S-S を計算します. (3) 極限が直接求めにくいとき, 「はさみうちの原理」という考え方を用います. bn≦an≦en のとき limb=limcn = α ならば liman=α n→ 00 n→∞ n→∞ この考え方を使う問題は,ほとんどの場合,設問の文章にある特徴がありま す. (ポイント) どういう意味? 解答 (1) (解I)(2項定理を使って示す方法) n (x+1)=2nCkck に x=1 を代入すると k=0 2"=nCo+nC1+nC2+..+nCn ¹) n=1 F²³5, 2²nCo+nC₁=1+n>newhere 2">n ( 解ⅡI) (数学的帰納法を使って示す方法 ) 2"> n (i) n=1のとき 左辺=2,右辺=1 だから, ①は成りたつ

回答募集中 回答数: 0
数学 高校生

120. この記述でも大丈夫ですか?

490 重要 例題 120 素数の問題 (余りによる整数の分類の利用) = nは自然数とする。 n。n+2. n+4がすべて素数であるのはn=3 あることを示せ。 [早稲田大, 東京女子大] n+2 4 n+4 基本117) 2 3 5 7 11 13 71 ⑤79 13 15 6 7 9 11 15 17 inn+2,+4の中にnが含まれている。 指針▷ nが素数でない場合は条件を満たさない。 nが素数の場合について, n+2, n+4の値を調べてみ ると右の表のようになり, n, n +2, n+4の中には必ず 3の倍数が含まれるらしいということがわかる。 よって、n=2,3のときは直接値を代入して条件を満た すかどうかを調べ、nが5以上の素数のときは, ○素数, 3の倍数 n=3k+1,3k+2の場合に分けて, 条件を満たさない、すなわちn+2,+4のどちらかが 素数にならないことを示すという方針で進める。 CHART 整数の問題 いくつかの値で 小手調べ (実験) 解答 nが素数でない場合は, 明らかに条件を満たさない。 nが素数の場合について [1] n=2のとき, n+2=4 となり,条件を満たさない。 [2] n=3のとき, n+2=5, n+4=7で、条件を満たす。 [3]nが5以上の素数のとき, nは3k+1, 3k+2 (kは自然 数) のいずれかで表され 00000 3の場合だけで (ii) n=3k+2のとき n+4=3k+6=3(k+2) +2は3以上の自然数であるから, n +4 は素数にならず, 条件を満たさない。 以上から,条件を満たすのはn=3の場合だけである。 (i) n=3k+1のとき n+2=3k+3=3(k+1) < +1は2以上の自然数であるから, n+2 は素数にならず, 条件を満たさない。 規則性の発見 3数のうち, nが素数でな <n+4 (6) も素数でない。 n=3k (n≧5) は素数にな らないから,この場合は考 えない。 の断りは重要。 k+1=1 とすると, n+2=3 ( 素数 ) となるため,このように書 いている [(ii) でも同様] 。 182 18 検討 双子素数と三つ子素数・ nは自然数とする。 n, n+2 がともに素数であるとき,これを 双子素数という。また, (n,n+2,+6) または (n, n+4, n+6) の形をした素数の組を三つ子素数という。なお, 上の例題から, n, n+2, n+4の形の素数は (3,5,7) しかないことがわかるが,これを三つ子 素数とはいわない。 双子素数や三つ子素数は無数にあることが予想されているが, 現在 ( 2018 年), そのことは証明されていない。

解決済み 回答数: 1
数学 高校生

この問題で、ピンクの線部の範囲について質問です。a🟰0の時の解はt🟰0,1なので、➖1<t<0も範囲になると思ったのですがら何故範囲にならないのでしょうか??

☆お気に入り登録 (ii) 三角関数を含む方程式の解の個数 **** aを定数とする。 0 に関する方程式 cos' sin0+a+1=0 について。 この方程式の解の個数をαの値の範囲によって調べよ。 ただし, 0≦0<27 とする 解説を見る 解答 Think 例題 133 (i) 与式より, (1-sin³0)-sin+a+1=0 ここで, sin0=t とおくと, ①は、 t²+t-2=a このtの方程式が解をもつのは,2つのグラフ y2 ya が-1st で共有点をもつときで ある. (vi). (v). y=t+t-2=(1+1/22-22 y=f+t-2 と y=α の位置関係と, そのときのt=sin0 y=t+t-2 と y=a との対応は下の2つのグラフのようになる. のグラフの関係からは y=t+t-2 tの2次方程式の解の 個数しかわからないの で, t=sine のグラフ y=a_1 -12 1 O 9 YNEW. 17 ・2 (i)(i) (vi) (vi) よって 求める解の個数は、 (i)a=-29 つまり、t=-12/2のとき π 2π 2個 4 (ü) (i) - <a<-2 つまり、1<</12/12/<<0に 418 (ii) a=-2 つまり, t = -1, 0のとき 3個 (iv) -2<a<0 つまり, 0<t<1に1個のとき, (v) a=0 つまり, t=1のとき, 1個 9 (vi)a<d, oka つまり, 共有点がないとき. 4' (iv) も対応して考える. sin'0+cos'0=1 0≦02 より -1sin 01 α(定数) を分離する. -212<t<0に1個ずつのとき, 2個 0個

解決済み 回答数: 1
数学 高校生

⑵です。 自分のような解答ではダメですかね。 数2B ベクトルです

Check 例題 352 交点の位置ベクトル(3) 考え方 (3) CCF を,g を用いて表す。 △ABCにおいて, BC=5, CA=6, AB=7 とする.この三角形の内接 円と辺BC, CA, AB の接点をそれぞれD,E,F とする.また, 線分BE と線分 AD の交点をGとする. AB=p, AC=gとして (1) 線分BD の長さを求め, ADをD, I を用いて表せ. (2) AGを. Gを用いて表せ。 (3) 3点C,G, F は一直線上にあることを示せ . 解答 C, G, F が一直線上にあるということは, CG = kCF となる実数kが存在すると いうことである. (1) BD=BF=x, CD = CE=y, AE = AF = z とおくと, よって, Focus x+y=5 ト y+z=6より, x=3, y=2, z=4 New B z+x=7 ABO BD=3, BD DC =32 なので, 2AB+3AC_2p+3g_ AD= 5 5 (2) 点Gは線分 AD 上にあるので, AG=kAD(kは実数) と表されるから, AG=12/3+1/23kg また, 点Gは線分BE 上にあるので, BG: GE=t:(1-t) とおくと, AG=(1-t) AB+tAE =(1-1) b+ ² ta 形 TER = ...... ② AG=² kb+ka34 …..① = 0, 0, 19 は平行ではないから,①,②より, B 10t= 9 12/231-4.12/23k/1/31 つまり 1/1381-1/3 k=1 6 → よって AG=1/31+1134 ( 広島市立大 ) X 3点A,B,Cが一直線上AC=kAB (kは実数) *** (3) CF=AF-AC-46-à CG-AG-AC (137+134)-9-130-139-13 (46-4) したがって CG-173CF よって, 3点 C, G, F は一直線上にある . BWA B -x- DyC F -3- 4 2 4 E E y IG 2 D 2 C 617 第9章

回答募集中 回答数: 0