学年

教科

質問の種類

数学 中学生

√42が無理数であることの証明についてです。 m=√42nなのでmが2よりも大きくなるのはわかるのですが、nがなぜ2よりも大きいといえるのかが分かりません。(青線部)教えてください。お願いします。

答 √42 が有理数であると仮定すると √42mm,nは自然数)と表される。 n =√42nとし、両辺を2乗すると m²=42n2... ① 結論を否定。 無理数でない ⇔有理数である m≧2.n≧2であるから,m, n を素因数分解したものをそ6<42くから。 れぞれ m=pip2.pk (P1, P2,, De は素数) n=gg....... (g1, Q2,, q は素数) とし、①に代入すると 2. 2. Di2DzDk2=2・3・7g2q2qi2 ここで,②の左辺の素因数の個数は 2k個 右辺の素因数の個数は 21+3個 の断り書きを忘れず に。 42=2・3・7 ② 偶数個。 奇数個。 すなわち、 同じ数が2通りに素因数分解されることになり、参考 ②で、2の素因数の 素因数分解の一意性に反する。 よって, 42 は有理数でない, すなわち無理数である。 個数が, 左辺は偶数個, 右辺は奇数個であること から矛盾を導いてもよい。 数学Ⅰの 「命題と証明」の単元においても,上の例題と同じような問題を背理法で証明する ことを学ぶが (p.80), そこでは,pg を 「1以外に正の公約数をもたない (互いに素であ 約数と倍数

解決済み 回答数: 1
数学 中学生

この問題教えてください

水 2 9 木 3 10 17 24 まり、 18 25 章のとびらからLINK!! 数学の広場 2つの自然数の積を簡単に求める方法 13ページで計算したとおり, 十の位の数が同じで、一の位の数の和が10になる 2桁の自然数どうしの積は,次のようにして求めることができます。 ① 2桁の自然数の十の位の数と十の位の数に1を加えた数の積を, 千の位と百の位に書く。 (求めた積が1桁のときは、百の位に書く。) ② 2桁の自然数の一の位どうしの積を, 十の位と一の位に書く。 (求めた積が1桁のときは、一の位に書き, 十の位には0を書く。) am 24 58 71 × 26 × 52 × 79 5609 624 L4x6 -2×(2+1) 3016 -8×2 -1×9 -5×(5+1) -7x (7+1) ○上のように計算できることを, 文字を使って証明してみましょう。 証明 2つの2桁の自然数は, 十の位の数が同じで、一の位の数の和が 10 だから, a, b, c をすべて9 以下の自然数とし,b+c=10と すると,それぞれ10a+b10a+c と表すことができる。 したがって, それらの積は, (10a+b)(10a+c)=(10a)2+( × 10a + =100a2+10ax10+ =100 (a2+α) + =100 + 1 3式の利用 と は、ともに1桁あるいは2桁の自然数だから、 が千の位と百の位に書かれる数, | が十の位と一の位に 書かれる数になる。 45ページで,ほかの2桁の自然数どうしの 積の求め方についても考えてみよう。 41

未解決 回答数: 1