✨ ベストアンサー ✨
APで球を切り取ることを考え、切り口と水平方向(横から)見ると平面で切り取られることが分かる
通過した平面で球を切り取ると断面の半径は√6の円になる
(三平方の定理、三角形の相似を利用)
通過する範囲はF~Hであり、これは正三角形(△AFH)の平面状にある
内接する正三角形の2点間の弧の長さを求めればよい(中心角120°)
→求めたい部分の円弧の長さは2√6π/3
たぶんこうなると思います
入試問題なら検索すれば分かるのではないかなぁ
高校入試の問題です
答えをなくしたので教えていただきたいです、、、!(´;ω;`)
(1)は解けたのですが、(2)はどうしても画像の私の解答の続け方がわからなくて、(図の正面側のQの軌道がどうなるのかがわからなくて、(でもこの軌道の長さと弧EQ1と弧EQ2の長さの和がUの周の長さになることはわかります!))
ヒントだけでも教えていただけると嬉しいです!!
✨ ベストアンサー ✨
APで球を切り取ることを考え、切り口と水平方向(横から)見ると平面で切り取られることが分かる
通過した平面で球を切り取ると断面の半径は√6の円になる
(三平方の定理、三角形の相似を利用)
通過する範囲はF~Hであり、これは正三角形(△AFH)の平面状にある
内接する正三角形の2点間の弧の長さを求めればよい(中心角120°)
→求めたい部分の円弧の長さは2√6π/3
たぶんこうなると思います
入試問題なら検索すれば分かるのではないかなぁ
この質問を見ている人は
こちらの質問も見ています😉