数学
高校生
解決済み

青でマークした部分の変換のやり方が分かりません。
-2の方は分かるのですが、なぜt^2になるのか教えて
貰えると助かります!

281 例題 基本の 175 指数関数の最大・最小 関数y=4+2+2+2 (x≦2) の最大値と最小値を求めよ。 関数y=6(2*+2)-2(4*+4-x) について, 2'+2x=t とおくとき,yをも 「を用いて表せ。 また, yの最大値を求めよ。 (1) おき換えを利用。 2* =t とおくと, yはtの2次式になるから 2次式は基本形α(t-p)+gに直す で解決! (2) まず,X2413 = (X+Y) -2XY を利用して, 4+4 を表す。 なお, 変数のおき換えは、 そのとりうる値の範囲に要注意。 基本 173 ytで表すと, tの2次式になる。 なお, t = 2x+2* の範囲を調べるには, 2'>0, 20に対し, 積 2.2 = 1 (一定) であるから, (相加平均) ≧ (相乗平均) が利用で きる。 2F =t とおくと t>0 したがって 0<t≦4 yをtの式で表すと t=1 x2であるから 0<t≦22 <p≦g2'≦2 y=4(2*)2-4・2*+2=4t-4t+2=4t- -2=4(1-2)²+1 ①の範囲において,y はt=4で最大, t 1/2で最小とな る。t=4のとき 4x+1 = 4.41" = 4.(2×12 y 50 最大 2=4 ゆえに x=2 に1のとき 2x= 1 2 ゆえに x=-1 最小 よってx=2のとき最大値50, x=-1のとき最小値1 (2) 4'+4-x=(2x)+(2-x)^=(2*+2-x)-2•2*•2-x=f2-2 ゆえに y=6t-2(t2-2)=-2t2+6t+4 <2x.2=2°=1 2020 であるから, (相加平均) (相乗平均) よ り (*)2x+2-x2√2*2=2 すなわち t≧2... ② ここで,等号は 2 = 2x すな わち x=-xからx=0のとき 成り立つ。 yA 17 2 最大 8 ①からy=-2(t-12/31+1/72 ② の範囲において,y は t=2 のとき最大値 8 をとる 32 t よってx=0のとき最大値 8 相加平均と相乗平均の関係 a>0,b>0のとき a+b (等号は a=bのとき成 り立つ。) < t=2となるのは, (*)で 等号が成り立つときであ る。 [(イ) 大阪産大] (1) 次の関数の最大値と最小値を求めよ。 y=(24) (1≦x≦2) (イ) y=4x-2x+2 (-1≦x≦3) 2)a>0, a≠1とする。 関数y=a2x+α2x-2(α*+α_*)+2について ata-x=t とおく。 y を tを用いて表し, yの最小値を求めよ。 5章 29 2指数関数
対数関数・指数関数の導関数

回答

✨ ベストアンサー ✨

そもそも2ˣ+2⁻ˣをtとおいているのだから
(2ˣ+2⁻ˣ)²はt²です

(1)のtと勘違いしていました…
早めに気づくことが出来て良かったです!
ありがとうございました🙏🏻

この回答にコメントする
疑問は解決しましたか?