数学
高校生
解決済み

この問題の(2)の問題の途中式がなぜAH=AMsinθになるのかが分かりません、、
説明お願いします

-----2 例題 147 空間図形の計量 1辺の長さが2である正四面体 ABCD において,辺 BCの中点を M, ∠AMD = 0 とするとき,次の値 を求めよ。 (1) cose (2) 正四面体 ABCDの体積V (3) 正四面体 ABCD に外接する球の半径R (4)正四面体 ABCD に内接する球の半径r B M A 次元を下げる 底面 高さ (2) V = X ABCD XAH Hはどの位置にあるか? (3) 立体のまま考えるのは難しい。 01 外接球の中心Oが含まれる三角形を抜き出して考える。 Action> 空間図形は, 対称面の切り口を考えよ M H 思考プロセス (4) 四面体の 内接球の 半径の求め方 類推 三角形の 内接円の 半径の求め方 (3) △ABC は, 1辺の長さが2の正三角形であるから AM = √3 (105 ABCD についても同様に考えると DM=√√3 △AMD において, 余弦定理により col. cose (3)+(√3-2° 2.3.3 JAAS 2 # C M 001 1 M H D TUR AM²+DM²-AD cos0= 3 002 2.AM-DM (2)AB=AC=AD=2より頂点Aから底面 BCDに下△ABH=△ACH = AA より BH = CH = DH ろした垂線をAH とすると,点Hは ABCD の外心である。よっては正三角 よって, 点Hは線分 MD 上にあり したがって AH=AMsine AHLMD ここで,0°0<180°より, sind>0であるから 1-(1)-2/2 sin=√1-cos20 2√2 = = 3 ゆえに,AH = √3. 2√2 2√√6 であるから 3 V= ・ABCD ・ AH 8 BCD の外心であるから、 H は BC の垂直二等分線 上にある。 256
空間図形の計量

回答

疑問は解決しましたか?