回答

✨ ベストアンサー ✨

平方数:1、4、9、16、25、36、49、64、81、100、・・・
B+30とB-30の差:60
差が60になる2つの平方数:4、64
よって、B=34
これで全部か?

隣り合う平方数の差:3、5、7、9、11、13、15、17、19、・・・⇒連続する奇数
4と64の差:5+7+9+11+13+15=60(連続する6つの奇数の和)

和が60になる連続する7つの奇数(3以上)の和はあるか?
3+5+7+9+11+13+15=63 ⇒ない

連続する8つ以上の奇数(3以上)の和はこれより大きくなるので、60になることはない

和が60になる連続する5つの奇数の和はあるか?
7+9+11+13+15=55、9+11+13+15+17=65 ⇒ない

和が60になる連続する4つの奇数の和はあるか?
11+13+15+17=56、13+15+17+19=64 ⇒ない

和が60になる連続する3つの奇数の和はあるか?
17+19+21=57、19+21+23=63 ⇒ない

和が60になる連続する2つの奇数の和はあるか?
29+31=60
差が29になる2つの連続する平方数は?
(x+1)²-x²=x²+2x+1-x²=2x+1=29 ⇒ x=14
14²=196、15²=225、16²=256
差が60になる2つの平方数:196、256
よって、B=226

以上より、34と226
平方数:1、4、9、16、25、36、49、64、81、100、・・・
B+30とB-30の差:60
差が60になる2つの平方数:4、64
よって、B=34
これで全部か?

隣り合う平方数の差:3、5、7、9、11、13、15、17、19、・・・⇒連続する奇数
4と64の差:5+7+9+11+13+15=60(連続する6つの奇数の和)

和が60になる連続する7つの奇数(3以上)の和はあるか?
3+5+7+9+11+13+15=63 ⇒ない

連続する8つ以上の奇数(3以上)の和はこれより大きくなるので、60になることはない

和が60になる連続する5つの奇数の和はあるか?
7+9+11+13+15=55、9+11+13+15+17=65 ⇒ない

和が60になる連続する4つの奇数の和はあるか?
11+13+15+17=56、13+15+17+19=64 ⇒ない

和が60になる連続する3つの奇数の和はあるか?
17+19+21=57、19+21+23=63 ⇒ない

和が60になる連続する2つの奇数の和はあるか?
29+31=60
差が29になる2つの連続する平方数は?
(x+1)²-x²=x²+2x+1-x²=2x+1=29 ⇒ x=14
14²=196、15²=225、16²=256
差が60になる2つの平方数:196、256
よって、B=226

以上より、34と226

高橋

すみません、間違えて2回ペーストしてしまいました。

高橋

平方数:1、4、9、16、25、36、49、64、81、100、・・・
B+30とB-30の差:60
差が60になる2つの平方数:4、64
よって、B=34
これで全部か?

隣り合う平方数の差:3、5、7、9、11、13、15、17、19、・・・⇒連続する奇数
4と64の差:5+7+9+11+13+15=60(連続する6つの奇数の和)

和が60になる連続する7つの奇数(3以上)の和はあるか?
3+5+7+9+11+13+15=63 ⇒ない

連続する8つ以上の奇数(3以上)の和はこれより大きくなるので、60になることはない

和が60になる連続する5つの奇数の和はあるか?
7+9+11+13+15=55、9+11+13+15+17=65 ⇒ない

和が60になる連続する4つの奇数の和はあるか?
11+13+15+17=56、13+15+17+19=64 ⇒ない

和が60になる連続する3つの奇数の和はあるか?
17+19+21=57、19+21+23=63 ⇒ない

和が60になる連続する2つの奇数の和はあるか?
29+31=60
差が29になる2つの連続する平方数は?
(x+1)²-x²=x²+2x+1-x²=2x+1=29 ⇒ x=14
14²=196、15²=225、16²=256
差が60になる2つの平方数:196、256
よって、B=226

以上より、34と226

この回答にコメントする
疑問は解決しましたか?