日本史
高校生

黒の並々引いたとこどうやって出すかわかりません

51 領垣 実数x, y, 3.x+y≧6, 2x-y≦4, x+2y≦7 を同時にみた すとき,次の問いに答えよ. (1) 3.x-yのとりうる値の最大値、最小値を求めよ. (2)x2+y^ のとりうる値の最大値、最小値を求めよ. 精講 領域D内を点(x, y) が動くとき, x+yのとりうる値はどのよう 考えればよいのでしょうか。 たとえば, (x,y)= (1,1) としたときの x+yは2ですが、 29 〈図II〉より,y=3x-k がB(3,2)を通るときは最小で、 C(1,3)を通るとき,kは最大 すなわち, B(3,2)を通るときは 最大値 7 をとり C(1,3) を通るときは最小値 0 をとる. (2) (0) とおくと,これは原点中 心, 半径の円を表し、この図形が <図1> の色 の部分と共有点をもちながら動くときのの とりうる値の範囲を考えればよい。 y\ <図III> 3 2 B (i) 最大値 0 円がBを通るとき, r2は最大で、最大値は 22 13 1 A 3 (i) 最小値 y=3x56 円が直線 CA, すなわち, 3x+y-6=0 と接するときを考える。 だから とおいて、この直線がDと共有点を このとき、接点は、直線CA13の交点で (11) もちながら動くときの切片kのとりうる値の範囲を考え ればよいのです. 2 D (1,1)) 最小値は(1)+(3)-13 32 18 この点は線分 CA 上にあるので、この点がの最小値を与え, y-32+6 「2」はどこに現れているかというと, x+y=2 だから、直線の切片 現れています。 (右図参照) (右図で, x+y=k はDと共有点をもっています) たとえば,右図では点 (1,1) だけではなく, x+y=k 0 上の太線部分の点をすべて代入したことになっているのです. 85 注2+y^ は, (0, 0) と(x,y) との距離の平方と考えることもできます. ポイント 不等式が表す領域内の点(x, y) に対して, x, yの関 解答 3x+y≥6 連立不等式 2-y≦4 の表す領域は ブラスだす。 <図1> 3 〈図I〉の色の部分 (境界も含む). x+2y≤7 2 数 f(x, y) の最大値、最小値は Ⅰ. f(x,y)=kとおき Ⅱ.kが図形的に何を意味するかを考えて Ⅲ. f(x,y)=k が領域と共有点をもつように動かし、 k の最大、最小を考える (1) とおくと くと,領域がかきやすくなります。 注 境界になる3つの直線の交点を先に求めてお 12 3 O 1 A 演習問題 51 <図Ⅱ> x,yが4つの不等式 x0,y≧0, 2x+3y≦12, 2x+y≦8

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉