数学
高校生

数1の集合の問題です。(2)の証明で、合同式を使って証明しようとしたのですが、これでいいんでしょうか
5n+2より、A={x| x≡2(mod5)}
5n+3より、x≡−3(mod5)
x≡2(mod5)
よって   B={x.|x≡2(mod5)}
したがってA=B

fiagrama . p.83 入して は4個の と, 例えば D. D る。 5 重要 例題 50 集合の包含関係 相等の証明 を整数全体の集合とするとき,次のことを証明せよ。 (1) A={4n+1|n∈Z},B={2n+1|n∈Z}であるとき ACB かつA≠B (2) A={5n+2|n∈Z},B={5n-3|n∈Z} であるとき A=B 7 指針 (1) ACB を示すためには, A の要素がすべてBの要素であること,すなわち, 「x∈A ならばxEB」 を示せばよい。 また, A≠Bであることを示すためには, Bの 要素であるが A の要素ではないものを1つ挙げればよい。 (2) A=B を示すためには, 「ACB かつ BCA」 を示せばよい。そのために, 「 x∈A ならば x∈B」 と 「x∈B ならばx∈A」の両方を示す。 解答 (1) x∈A とすると, x=4n+1 (nは整数)と書くことが できる。 このとき 2n=m とおくと,mは整数で x=2m+1 xEB x=2(2n)+1 A X ゆえに よって, x∈A ならばx∈B が成り立つから ACB また, 3EBであるが 3EA したがって A≠B (2) x∈A とすると, x=5n+2 (nは整数)と書くことが できる。このとき x=5(n+1)-3 n+1=kとおくと, kは整数で ゆえに XEB よって B x=5k-3 20 ならば∈B が成り立つから p.80 基本事項 1 3 2章 15 集 が10とまでわ 合 xEB を示すために, 2×(整数)+1の形にす る。 mはもEBを示すためのもの 「ひがしだったろろじゃん」ていう のはACBを示す神 ために ちがう 1B の要素であるが、Aのmとい 要素ではないものの存在た。 を示すことで, A≠BがM=1のとき 今はAを 示せる。 x=B を示すために、すときに変え 5×(整数) -3の形にす 30 る。 APBなんだから

回答

まだ回答がありません。

疑問は解決しましたか?