数学
高校生
解決済み

チャート式からの問題です。
このsin50°をcos40°にするのは分かるのですが、それでなぜ等式が成り立つことの証明になるのかが分かりません。
誰かわかる方がいれば、教えて下さい。

-78 基本例題 109 90°-8の三角比の利用目の出費 8 (1) 次の等式が成り立つことを証明せよ。 (ア) sin²40°+sin²50°=1 (イ) tan 13°tan77°=1 (2) △ABC の ∠A, ∠B, ∠Cの大きさを, それぞれA, B, Cで表すとき、 W 等式 COS A+B 2 C = sin / が成り立つことを証明せよ。 CHART & SOLUTION 90° -0の三角比 sin (90°-0)=cos0, cos (90°-0)=sin0, tan (90°-0)=- (1) (ア) 40°+50°=90° (イ) 13°+77°=90° に着目。 (2) A,B,Cは三角形の3つの内角→ A+B+C=180° よって, A+B 180°C 2 2 COS 解答 $ $ (1)(ア) sin50°=sin (90°-40°= cos 40° であるから sin240°+sin250°=sin240°+cos240°=1 (イ) tan77°=tan(90°-13°)= tan 13°tan 77°=tan 13° (2) A+B+C=180° であるから よって A+B 2 -=COS -=90°. となり、90°-0の三角比の公式が使える。 2 180°C 2 tan 13° tan 13° であるから A+B=180°-C 00000 = cos (90°) = sin 2 INFORMATION 1PかQの一方を変形して,他方を導く。 2 P-Qを変形して, 0 となることを示す。 3PとQのそれぞれを変形して,同じ式を導く。 上の例題では,(1), (2) ともに1の方法によって証明している。 010 p.174 基本事項 3 tan0 sin(90°-8)=cost sin20+cos'0=1 COS tan (90°- 0)=¹ tan6 ( 90°-9) = sin0 等式 P=Qが成り立つことの証明方法 (数学ⅡI) P=P'=......=Q P-Q=P'-Q'=………=0 P=P'=...=R, Q=Q1=...=R|

回答

✨ ベストアンサー ✨

右側にも書いてある通り、
(sinA)^2 + (cosA)^2 = 1
が成り立つからです。(数I)
今回はA=40

チャートに限りませんが、右側のメモ欄?みたいなところに
「この公式使いました」というのは意外と書いてあります。

この回答にコメントする
疑問は解決しましたか?