✨ ベストアンサー ✨
週期函數滿足: f(x)=f(x+T)
故
sin(x/2)+sin(x/3)______________(1)
=sin((x+T)/2)+sin((x+T)/3)_____________(2)
=sin(x/2)cos(T/2)+cos(x/2)sin(T/2)
+sin(x/3)cos(T/3)+cos(x/3)sin(T/3)______(3)
(1)=(3),故
sin(x/2)[cos(T/2)-1]+cos(x/2)sin(T/2)
+sin(x/3)[cos(T/3)-1]+cos(x/3)sin(T/3)=0
上式函數要等於0,T須滿足
cos(T/2)=1
sin(T/2)=0
cos(T/3)=1
sin(T/3)=0
已知
sin函數在0, ♤, 2♤, 3♤......時等於0
cos函數在0, 2♤, 4♤, 6♤.....時等於1
(♤=圓周率)
故
滿足cos(T/2)=1的T有:
0, 4♤, 8♤, 12♤.....
同理,sin(T/2)=0有:
0, 4♤, 6♤, 8♤......
cos(T/3)=1有:
0, 6♤, 12♤, 18♤......
sin(T/3)=0有:
0, 3♤, 6♤, 9♤.....
全部取交集(共同有的),故
T=12♤
(T=0不算)